[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]Regulation Mechanism and Breeding Application of Flowering Time in Maize
†These authors contributed equally to this paper
Received date: 2024-08-21
Accepted date: 2024-10-31
Online published: 2024-10-31
Maize (Zea mays) is a staple crop worldwide, serving as a major source for food, feedstock, and industrial materials. Flowering time, a key agronomic trait determining diverse environmental adaptation and yield potential of crops, is determined by two developmental transitions (namely vegetative phase change and floral transition), and complicatedly regulated by internal factors (such as genetic factors and plant hormones) and external environmental factors. Given the importance of flowering time, in this review, we summarize the research progresses on the regulation of the two-phase transitions in maize, mainly focusing on the aspects of structural basis, physiological basis, genetic basis and molecular mechanisms. We also highlight the contribution of key flowering regulators to geographical adaptation of maize, and discuss future research directions on flowering and application in breeding, aiming to deepen our understanding of the genetic regulation of maize flowering and provide a theoretical basis for genetic improvement of maize cultivars adapting to diverse environmental conditions.
Key words: maize; vegetative phase change; floral transition; geographical adaptation
Juan Yang , Yuelei Zhao , Xiaoyuan Chen , Baobao Wang , Haiyang Wang . Regulation Mechanism and Breeding Application of Flowering Time in Maize[J]. Chinese Bulletin of Botany, 2024 , 59(6) : 912 -931 . DOI: 10.11983/CBB24127
[1] | Abedon BG, Hatfield RD, Tracy WF (2006). Cell wall composition in juvenile and adult leaves of maize (Zea mays L.). J Agric Food Chem 54, 3896-3900. |
[2] | Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297. |
[3] | B?urle I, Dean C (2006). The timing of developmental transitions in plants. Cell 125, 655-664. |
[4] | Beavis WD, Smith OS, Grant D, Fincher R (1994). Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci 34, 882-896. |
[5] | Bendix C, Mendoza JM, Stanley DN, Meeley R, Harmon FG (2013). The circadian clock-associated gene gigantea1 affects maize developmental transitions. Plant Cell Environ 36, 1379-1390. |
[6] | Beydler B, Osadchuk K, Cheng CL, Manak JR, Irish EE (2016). The juvenile phase of maize sees upregulation of stress-response genes and is extended by exogenous jasmonic acid. Plant Physiol 171, 2648-2658. |
[7] | Bolduc N, Hake S (2009). The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1. Plant Cell 21, 1647-1658. |
[8] | Bomblies K, Wang RL, Ambrose BA, Schmidt RJ, Meeley RB, Doebley J (2003). Duplicate FLORICAULA/LEAFY homologs zfl1and zfl2 control inflorescence architecture and flower patterning in maize. Development 130, 2385-2395. |
[9] | Bouché F, Lobet G, Tocquin P, Périlleux C (2016). FLOR- ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Res 44, D1167-D1171. |
[10] | Bouchet S, Servin B, Bertin P, Madur D, Combes V, Dumas F, Brunel D, Laborde J, Charcosset A, Nicolas S (2013). Adaptation of maize to temperate climates: mid-density genome-wide association genetics and diversity patterns reveal key genomic regions, with a major contribution of the Vgt2 (ZCN8) locus. PLoS One 8, e71377. |
[11] | Bruce WB, Edmeades GO, Barker TC (2002). Molecular and physiological approaches to maize improvement for drought tolerance. J Exp Bot 53, 13-25. |
[12] | Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li HH, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Sanchez Villeda H, da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu JM, Zhang ZW, Kresovich S, McMullen MD (2009). The genetic architecture of maize flowering time. Science 325, 714-718. |
[13] | Castelletti S, Tuberosa R, Pindo M, Salvi S (2014). A MITE transposon insertion is associated with differential methylation at the maize flowering time QTL Vgt1. G3(Bethesda) 4, 805-812. |
[14] | Chen GS, Zhang B, Ding JQ, Wang HZ, Deng C, Wang JL, Yang QH, Pi QY, Zhang RY, Zhai HY, Dong JF, Huang JS, Hou JB, Wu JH, Que JM, Zhang F, Li WQ, Min HX, Tabor G, Li BL, Liu XG, Zhao JR, Yan JB, Lai ZB (2022a). Cloning southern corn rust resistant gene RppK and its cognate gene AvrRppK from Puccinia polysora. Nat Commun 13, 4392. |
[15] | Chen SH, Gao S, Wang DY, Liu J, Ren YY, Wang ZH, Wei X, Wang Q, Huang XH (2024). FKF1b controls reproductive transition associated with adaptation to geographical distribution in maize. J Integr Plant Biol 66, 943-955. |
[16] | Chen WK, Chen L, Zhang X, Yang N, Guo JH, Wang M, Ji SH, Zhao XY, Yin PF, Cai LC, Xu J, Zhang LL, Han YJ, Xiao YN, Xu G, Wang YB, Wang SH, Wu S, Yang F, Jackson D, Cheng JK, Chen SH, Sun CQ, Qin F, Tian F, Fernie AR, Li JS, Yan JB, Yang XH (2022b). Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science 375, eabg7985. |
[17] | Cho LH, Yoon J, Tun W, Baek G, Peng X, Hong WJ, Mori IC, Hojo Y, Matsuura T, Kim SR, Kim ST, Kwon SW, Jung KH, Jeon JS, An G (2022). Cytokinin increases vegetative growth period by suppressing florigen expression in rice and maize. Plant J 110, 1619-1635. |
[18] | Chuck G, Cigan AM, Saeteurn K, Hake S (2007). The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet 39, 544-549. |
[19] | Colasanti J, Sundaresan V (2000). ‘Florigen’ enters the molecular age: long-distance signals that cause plants to flower. Trends Biochem Sci 25, 236-240. |
[20] | Colasanti J, Yuan Z, Sundaresan V (1998). The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell 93, 593-603. |
[21] | Cui JM, Zhao B, Sun BD, Pei ZQ, Liu ZP, Wang YF, Lu DW, Lu LY, Sun HC, Niu YF, Zheng LM, Fan Y, Cui JM (2003). Breeding and application of YW-S inbred maize line Chang 7-2. Rain Fed Crops 23, 187-191. (in Chinese) |
崔俊明, 赵博, 孙本栋, 裴振群, 刘智萍, 王燕峰, 卢道文, 芦连勇, 孙海潮, 牛永峰, 郑丽敏, 范阳, 崔建民 (2003). YW-S血缘玉米自交系昌7-2的选育及应用. 杂粮作物 23, 187-191. | |
[22] | Danilevskaya ON, Meng X, Selinger DA, Deschamps S, Hermon P, Vansant G, Gupta R, Ananiev EV, Muszynski MG (2008) Involvement of the MADS-box gene ZMM4 in floral induction and inflorescence development in maize. Plant Physiol 147, 2054-2069. |
[23] | Daryanto S, Wang LX, Jacinthe PA (2016). Global synthesis of drought effects on maize and wheat production. PLoS One 11, e0156362. |
[24] | Deng C, Leonard A, Cahill J, Lv M, Li Y, Thatcher S, Li X, Zhao X, Du W, Li Z, Li H, Llaca V, Fengler K, Marshall L, Harris C, Tabor G, Li Z, Tian Z, Yang Q, Chen Y, Tang J, Wang X, Hao J, Yan J, Lai Z, Fei X, Song W, Lai J, Zhang X, Shu G, Wang Y, Chang Y, Zhu W, Xiong W, Sun J, Li B, Ding J (2022). The RppC- AvrRppC NLR-effector interaction mediates the resistance to southern corn rust in maize. Mol Plant 15, 904-912. |
[25] | Doebley J (2004). The genetics of maize evolution. Annu Rev Genet 38, 37-59. |
[26] | Dong ZS, Danilevskaya O, Abadie T, Messina C, Coles N, Cooper M (2012). A gene regulatory network model for floral transition of the shoot apex in maize and its dynamic modeling. PLoS One 7, e43450. |
[27] | Ducrocq S, Madur D, Veyrieras JB, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Charcosset A (2008). Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics 178, 2433-2437. |
[28] | Evans MMS, Passas HJ, Poethig RS (1994). Heterochronic effects of glossy15 mutations on epidermal cell identity in maize. Development 120, 1971-1981. |
[29] | Evans MMS, Poethig RS (1995). Gibberellins promote vegetative phase change and reproductive maturity in maize. Plant Physiol 108, 475-487. |
[30] | Fan M, Li XH, Feng HP (2006). Influence of planting density on male and female corn gametophyte blossom progress. Seed World (10), 26-27. (in Chinese) |
樊明, 李小惠, 冯海萍 (2006). 种植密度对玉米雌雄穗开花进度及产量的影响. 种子世界 (10), 26-27. | |
[31] | Foerster JM, Beissinger T, De Leon N, Kaeppler S (2015). Large effect QTL explain natural phenotypic variation for the developmental timing of vegetative phase change in maize (Zea mays L.). Theor Appl Genet 128, 529-538. |
[32] | Food and Agriculture Organization of the United Nations Agriculture Databases (FAO, 2021). http://www.fao.org/statistics/databases/en/. |
[33] | Fornara F, De Montaigu A, Coupland G (2010). SnapShot: control of flowering in Arabidopsis. Cell 141, 550-550. |
[34] | Franklin KA, Praekelt U, Stoddart WM, Billingham OE, Halliday KJ, Whitelam GC (2003). Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis. Plant Physiol 131, 1340-1346. |
[35] | Gao HJ, Cui JJ, Liu SX, Wang SH, Lian YY, Bai YT, Zhu TF, Wu HH, Wang YJ, Yang SP, Li XF, Zhuang JH, Chen LM, Gong ZZ, Qin F (2022). Natural variations of ZmSRO1d modulate the trade-off between drought resistance and yield by affecting ZmRBOHC-mediated stomatal ROS production in maize. Mol Plant 15, 1558-1574. |
[36] | Ge TD, Huang DF, Lu B, Tang DM, Song SW (2008). Effect of inorganic and organic nitrogen supply on accumulation of carbohydrate and nitrogen in tomato seedlings under hydroponic culture. Chin J Appl Environ Biol 14, 604-609. (in Chinese) |
葛体达, 黄丹枫, 芦波, 唐东梅, 宋世威 (2008). 无机氮和有机氮对水培番茄幼苗碳水化合物积累及氮素吸收的影响. 应用与环境生物学报 14, 604-609. | |
[37] | Guo L, Wang XH, Zhao M, Huang C, Li C, Li D, Yang CJ, York AM, Xue W, Xu GH, Liang YM, Chen QY, Doebley JF, Tian F (2018). Stepwise cis-regulatory changes in ZCN8 contribute to maize flowering-time adaptation. Curr Biol 28, 3005-3015. |
[38] | Gupta A, Rico-Medina A, Ca?o-Delgado AI (2020). The physiology of plant responses to drought. Science 368, 266-269. |
[39] | He ZY, Tan SY, Lin L, Hong DK, Bai CY (1998). Study on various light intensity and its quality affecting the fertility of maize staminate flower. Chin Agric Sci Bull 14(4), 6-8. (in Chinese) |
赫忠友, 谭树义, 林力, 洪德开, 白翠云 (1998). 不同光照强度和光质对玉米雄花育性的影响. 中国农学通报 14(4), 6-8. | |
[40] | Hibara KI, Isono M, Mimura M, Sentoku N, Kojima M, Sakakibara H, Kitomi Y, Yoshikawa T, Itoh JI, Nagato Y (2016). Jasmonate regulates juvenile-to-adult phase transition in rice. Development 143, 3407-3416. |
[41] | Holland JB, Goodman MM (1995). Combining ability of tropical maize accessions with U.S. germplasm. Crop Sci 35, 767-773. |
[42] | Huang C, Sun HY, Xu DY, Chen QY, Liang YM, Wang XF, Xu GH, Tian JG, Wang CL, Li D, Wu LS, Yang XH, Jin WW, Doebley JF, Tian F (2018). ZmCCT9 enhances maize adaptation to higher latitudes. Proc Natl Acad Sci USA 115, E334-E341. |
[43] | Huang YC, Wang HH, Zhu YD, Huang X, Li S, Wu XG, Zhao Y, Bao ZG, Qin L, Jin YB, Cui YH, Ma GJ, Xiao Q, Wang Q, Wang JC, Yang XR, Liu HJ, Lu XD, Larkins BA, Wang WQ, Wu YR (2022). THP9 enhances seed protein content and nitrogen-use efficiency in maize. Nature 612, 292-300. |
[44] | Hufford MB, Xu X, van Heerwaarden J, Pyh?j?rvi T, Chia JM, Cartwright RA, Elshire RJ, Glaubitz JC, Guill KE, Kaeppler SM, Lai JS, Morrell PL, Shannon LM, Song C, Springer NM, Swanson-Wagner RA, Tiffin P, Wang J, Zhang G, Doebley J, McMullen MD, Ware D, Buckler ES, Yang S, Ross-Ibarra J (2012). Comparative population genomics of maize domestication and improvement. Nat Genet 44, 808-811. |
[45] | Huijser P, Schmid M (2011). The control of developmental phase transitions in plants. Development 138, 4117-4129. |
[46] | Hung HY, Shannon LM, Tian F, Bradbury PJ, Chen C, Flint-Garcia SA, McMullen MD, Ware D, Buckler ES, Doebley JF, Holland JB (2012). ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proc Natl Acad Sci USA 109, E1913-E1921. |
[47] | Kiniry JR, Ritchie JT, Musser RL, Flint EP, Iwig WC (1983). The photoperiod sensitive interval in maize. Agron J 75, 687-690. |
[48] | Kong DX, Li CY, Xue WC, Wei HB, Ding H, Hu GZ, Zhang XM, Zhang GS, Zou T, Xian YT, Wang BB, Zhao YP, Liu YT, Xie YR, Xu MY, Wu H, Liu Q, Wang HY (2023). UB2/UB3/TSH4-anchored transcriptional networks regulate early maize inflorescence development in response to simulated shade. Plant Cell 35, 717-737. |
[49] | Lauter N, Kampani A, Carlson S, Goebel M, Moose SP (2005). microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc Natl Acad Sci USA 102, 9412-9417. |
[50] | Lawit SJ, Wych HM, Xu DP, Kundu S, Tomes DT (2010). Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant Cell Physiol 51, 1854-1868. |
[51] | Lazakis CM, Coneva V, Colasanti J (2011). ZCN8 encodes a potential orthologue of Arabidopsis FT florigen that integrates both endogenous and photoperiod flowering signals in maize. J Exp Bot 62, 4833-4842. |
[52] | Li CQ, Cao RY, Zheng HM, Zhang SL, Li Y, Li CH (2010). Effects of planting density on the development of maize tassel. J Hennan Agric Univ 44, 630-634. (in Chinese) |
李春奇, 曹偌遥, 郑慧敏, 张守林, 李芸, 李潮海 (2010). 种植密度对玉米雄穗发育的影响. 河南农业大学学报 44, 630-634. | |
[53] | Li CY, Li YY, Song GS, Yang D, Xia ZC, Sun CH, Zhao YL, Hou M, Zhang MY, Qi Z, Wang BB, Wang HY (2023a). Gene expression and expression quantitative trait loci analyses uncover natural variations underlying the improvement of important agronomic traits during modern maize breeding. Plant J 115, 772-787. |
[54] | Li J, Li CY (2019). Seventy-year major research progress in plant hormones by Chinese scholars. Sci Sin Vitae 49, 1227-1281. (in Chinese) |
黎家, 李传友 (2019). 新中国成立70年来植物激素研究进展. 中国科学: 生命科学 49, 1227-1281. | |
[55] | Li QQ, Wu GX, Zhao YP, Wang BB, Zhao BB, Kong DX, Wei HB, Chen CX, Wang HY (2020). CRISPR/Cas9- mediated knockout and overexpression studies reveal a role of maize phytochrome C in regulating flowering time and plant height. Plant Biotechnol J 18, 2520-2532. |
[56] | Li WY, Jia HT, Li MF, Huang YQ, Chen WK, Yin PF, Yang ZX, Chen QY, Tian F, Zhang ZX, Yang XH, Liu L (2023b). Divergent selection of KNR6 maximizes grain production by balancing the flowering-time adaptation and ear size in maize. Plant Biotechnol J 21, 1311-1313. |
[57] | Li XH, Li MS, Yuan LX, Zhang SH (2000). Research on improvement and utilization of tropical, subtropical maize germplasm. Sci Agric Sin 33(S1), 20-26. (in Chinese) |
李新海, 李明顺, 袁力行, 张世煌 (2000). 热带、亚热带玉米种质的研究与利用. 中国农业科学 33(S1), 20-26. | |
[58] | Li YX, Li CH, Bradbury PJ, Liu XL, Lu F, Romay CM, Glaubitz JC, Wu X, Peng B, Shi YS, Song YC, Zhang DF, Buckler ES, Zhang ZW, Li Y, Wang TY (2016). Identification of genetic variants associated with maize flowering time using an extremely large multi-genetic background population. Plant J 86, 391-402. |
[59] | Li ZG, Li K, Yang XH, Hao HQ, Jing HC (2021). Combined QTL mapping and association study reveals candidate genes for leaf number and flowering time in maize. Theor Appl Genet 134, 3459-3472. |
[60] | Li ZM, Gao FR, Liu YJ, Abou-Elwafa SF, Qi JL, Pan HB, Hu XM, Ren ZZ, Zeng HX, Liu ZX, Zhang DL, Xi ZY, Liu TX, Chen YH, Su HH, Xiong SP, Ku L (2023c). ZmGI2 regulates flowering time through multiple flower development pathways in maize. Plant Sci 332, 111701. |
[61] | Liang YM, Liu Q, Wang XF, Huang C, Xu GH, Hey S, Lin HY, Li C, Xu DY, Wu LS, Wang CL, Wu WH, Xia JL, Han X, Lu SJ, Lai JS, Song WB, Schnable PS, Tian F (2019). ZmMADS69 functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to maize flowering time adaptation. New Phytol 221, 2335-2347. |
[62] | Liu BX, Zhang B, Yang ZR, Liu Y, Yang SP, Shi YL, Jiang CF, Qin F (2021). Manipulating ZmEXPA4 expression ameliorates the drought-induced prolonged anthesis and silking interval in maize. Plant Cell 33, 2058-2071. |
[63] | Liu HJ, Wang XQ, Warburton ML, Wen WW, Jin ML, Deng M, Liu J, Tong H, Pan QC, Yang XH, Yan JB (2015a). Genomic, transcriptomic, and phenomic variation reveals the complex adaptation of modern maize breeding. Mol Plant 8, 871-884. |
[64] | Liu L, Du YF, Shen XM, Li MF, Sun W, Huang J, Liu ZJ, Tao YS, Zheng YL, Yan JB, Zhang ZX (2015b). KRN4 controls quantitative variation in maize kernel row number. PLoS Genet 11, e1005670. |
[65] | Mao HD, Wang HW, Liu SX, Li ZG, Yang XH, Yan JB, Li JS, Tran LSP, Qin F (2015). A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat Commun 6, 8326. |
[66] | Mcnellis TW, Deng XW (1995). Light control of seedling morphogenetic pattern. Plant Cell 7, 1749-1761. |
[67] | Meng X, Muszynski MG, Danilevskaya ON (2011). The FT-like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. Plant Cell 23, 942-960. |
[68] | Moose SP, Sisco PH (1994). Glossy15 controls the epidermal juvenile-to-adult phase transition in maize. Plant Cell 6, 1343-1355. |
[69] | Ni XY, Liu LC, Lei BM (1996). Study on the selection of maize inbred line S37 suited to mountain area maize breeding. J Sichuan Agric Univ 14, 366-370. (in Chinese) |
倪昔玉, 刘礼超, 雷本鸣 (1996). 山区玉米育种用优良自交系苏37(S37)的选育研究. 四川农业大学学报 14, 366-370. | |
[70] | Osadchuk K, Cheng CL, Irish EE (2019). Jasmonic acid levels decline in advance of the transition to the adult phase in maize. Plant Direct 3, e00180. |
[71] | Poethig RS (2010). The past, present, and future of vegetative phase change. Plant Physiol 154, 541-544. |
[72] | Poethig RS (2013). Vegetative phase change and shoot maturation in plants. Curr Top Dev Biol 105, 125-152. |
[73] | Poethig S (1988). A non-cell-autonomous mutation regulating juvenility in maize. Nature 336, 82-83. |
[74] | Salvi S, Sponza G, Morgante M, Tomes D, Niu XM, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E, Li BL, Hainey CF, Radovic S, Zaina G, Rafalski JA, Tingey SV, Miao GH, Phillips RL, Tuberosa R (2007). Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA 104, 11376-11381. |
[75] | Sauer M, Zhao JF, Park M, Khangura RS, Dilkes BP, Poethig RS (2023). Identification of the Teopod1, Teopod2, and early phase change genes in maize. G3 (Bethesda) 13, jkad179. |
[76] | Sawers RJ, Linley PJ, Farmer PR, Hanley NP, Costich DE, Terry MJ, Brutnell TP (2002). elongated mesocotyl1, a phytochrome-deficient mutant of maize. Plant Physiol 130, 155-163. |
[77] | Sawers RJH, Sheehan MJ, Brutnell TP (2005). Cereal phytochromes: targets of selection, targets for manipulation? Trends Plant Sci 10, 138-143. |
[78] | Sheehan MJ, Kennedy LM, Costich DE, Brutnell TP (2007). Subfunctionalization of PhyB1 and PhyB2 in the control of seedling and mature plant traits in maize. Plant J 49, 338-353. |
[79] | Stephenson E, Estrada S, Meng X, Ourada J, Muszynski MG, Habben JE, Danilevskaya ON (2019). Over-expression of the photoperiod response regulator ZmCCT10 modifies plant architecture, flowering time and inflorescence morphology in maize. PLoS One 14, e0203728. |
[80] | Su HH, Cao LR, Ren ZZ, Sun WH, Zhu BQ, Ma SX, Sun CY, Zhang DL, Liu ZX, Zeng HX, Yang WJ, Liu YP, Zheng LL, Yang YW, Wu ZD, Zhu YF, Ku L, Chong L, Chen YH (2024). ZmELF6-ZmPRR37 module regulates maize flowering and salt response. Plant Biotechnol J 22, 929-945. |
[81] | Su HH, Cao YY, Ku L, Yao W, Cao YY, Ren ZZ, Dou DD, Wang HT, Ren ZB, Liu HF, Tian L, Zheng YG, Chen C, Chen YH (2018). Dual functions of ZmNF-YA3 in photoperiod-dependent flowering and abiotic stress responses in maize. J Exp Bot 69, 5177-5189. |
[82] | Su HH, Chen ZH, Dong YH, Ku L, Abou-Elwafa SF, Ren ZZ, Cao YY, Dou DD, Liu ZX, Liu HF, Tian L, Zhang DL, Zeng HX, Han SB, Zhu FF, Du CG, Chen YH (2021). Identification of ZmNF-YC2 and its regulatory network for maize flowering time. J Exp Bot 72, 7792-7807. |
[83] | Sun HY, Wang CL, Chen XY, Liu HB, Huang YM, Li SX, Dong ZB, Zhao XM, Tian F, Jin WW (2020). dlf1 promotes floral transition by directly activating ZmMADS4 and ZmMADS67 in the maize shoot apex. New Phytol 228, 1386-1400. |
[84] | Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES 4th (2001). Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28, 286-289. |
[85] | Tian JG, Wang CL, Xia JL, Wu LS, Xu GH, Wu WH, Li D, Qin WC, Han X, Chen QY, Jin WW, Tian F (2019). Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science 365, 658-664. |
[86] | Tian T, Wang SH, Yang SP, Yang ZR, Liu SX, Wang YJ, Gao HJ, Zhang SS, Yang XH, Jiang CF, Qin F (2023). Genome assembly and genetic dissection of a prominent drought-resistant maize germplasm. Nat Genet 55, 496-506. |
[87] | Tsuchiya T, Eulgem T (2010a). Co-option of EDM2 to distinct regulatory modules in Arabidopsis thaliana development. BMC Plant Biol 10, 203. |
[88] | Tsuchiya T, Eulgem T (2010b). The Arabidopsis defense component EDM2 affects the floral transition in an FLC- dependent manner. Plant J 62, 518-528. |
[89] | van Nocke S, Muszynski M, Briggs K, Amasino RM (2000). Characterization of a gene from Zea mays related to the Arabidopsis flowering-time gene LUMINIDEPENDENS. Plant Mol Biol 44, 107-122. |
[90] | Wang BB, Lin ZC, Li X, Zhao YP, Zhao BB, Wu GX, Ma XJ, Wang H, Xie YR, Li QQ, Song GS, Kong DX, Zheng ZG, Wei HB, Shen RX, Wu H, Chen CX, Meng ZD, Wang TY, Li Y, Li XH, Chen YH, Lai JS, Hufford MB, Ross-Ibarra J, He H, Wang HY (2020). Genome-wide selection and genetic improvement during modern maize breeding. Nat Genet 52, 565-571. |
[91] | Wang CL, Cheng FF, Sun ZH, Ku LX, Chen X, Chen YH (2008). Advances in genetic research and related genes of photoperiod sensitivity in maize. J Maize Sci 16, 11-14, 19. (in Chinese) |
王翠玲, 程芳芳, 孙朝晖, 库丽霞, 陈晓, 陈彦惠 (2008). 玉米光周期敏感性的遗传特性及相关基因的研究进展. 玉米科学 16, 11-14, 19. | |
[92] | Wang JW, Czech B, Weigel D (2009). miR156 regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138, 738-749. |
[93] | Wang KR, Li SK (2017). Analysis of influencing factors on kernel dehydration rate of maize hybrids. Sci Agric Sin 50, 2027-2035. (in Chinese) |
王克如, 李少昆 (2017). 玉米籽粒脱水速率影响因素分析. 中国农业科学 50, 2027-2035. | |
[94] | Wang XL, Wang HW, Liu SX, Ferjani A, Li JS, Yan JB, Yang XH, Qin F (2016). Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat Genet 48, 1233-1241. |
[95] | Winkler RG, Freeling M (1994). Physiological genetics of the dominant gibberellin-nonresponsive maize dwarfs, Dwarf8and Dwarf9. Planta 193, 341-348. |
[96] | Wu G, Poethig RS (2009). Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133, 3539-3547. |
[97] | Wu LS, Liang YM, Guo L, Zhu YF, Qin WC, Wu WH, Jia H, Tian F (2023). A single nucleotide polymorphism in conz1 enhances maize adaptation to higher latitudes. Plant Biotechnol J 21, 2163-2165. |
[98] | Xie YR, Zhou Q, Zhao YP, Li QQ, Liu Y, Ma MD, Wang BB, Shen RX, Zheng ZG, Wang HY (2020). FHY3 and FAR1 integrate light signals with the miR156-SPL module-mediated aging pathway to regulate Arabidopsis flowering. Mol Plant 13, 483-498. |
[99] | Xu DY, Wang XF, Huang C, Xu GH, Liang YM, Chen QY, Wang CL, Li D, Tian JG, Wu LS, Wu YY, Guo L, Wang XH, Wu WH, Zhang WQ, Yang XH, Tian F (2017). Glossy15 plays an important role in the divergence of the vegetative transition between maize and its progenitor, teosinte. Mol Plant 10, 1579-1583. |
[100] | Xu HW, Song FB, Tong SY, Zhu XC (2012). Study on carbon and nitrogen metabolism of tassel in maize. Hubei Agric Sci 51, 2918-2920. (in Chinese) |
徐洪文, 宋凤斌, 童淑媛, 朱先灿 (2012). 玉米雄穗碳氮代谢研究. 湖北农业科学 51, 2918-2920. | |
[101] | Xu ZH, Chong K (2002). Plant development biology in China: past, present and future. J Integer Plant Biol 44, 1085-1095. |
[102] | Yang J, Wei HB, Hou M, Chen LH, Zou T, Ding H, Jing YF, Zhang XF, Zhao YP, Liu Q, Heng YQ, Wu H, Wang BB, Kong DX, Wang HY (2023a). ZmSPL13 and ZmSPL29 act together to promote vegetative and reproductive transition in maize. New Phytol 239, 1505-1520. |
[103] | Yang N, Wang YB, Liu XG, Jin ML, Vallebueno-Estrada M, Calfee E, Chen L, Dilkes BP, Gui ST, Fan XM, Harper TK, Kennett DJ, Li WQ, Lu YL, Ding JQ, Chen ZQ, Luo JY, Mambakkam S, Menon M, Snodgrass S, Veller C, Wu SS, Wu SY, Zhuo L, Xiao YJ, Yang XH, Stitzer MC, Runcie D, Yan JB, Ross-Ibarra J (2023b). Two teosintes made modern maize. Science 382, eadg8940. |
[104] | Yang Q, Li Z, Li WQ, Ku L, Wang C, Ye JR, Li K, Yang N, Li YP, Zhong T, Li JS, Chen YH, Yan JB, Yang XH, Xu ML (2013). CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proc Natl Acad Sci USA 110, 16969-16974. |
[105] | Yun F, Liu GS, Shi HZ, Song J (2010). Effects of light and nitrogen interaction on photosynthesis and chlorophyll fluorescence characteristics in flue-cured tobacco. Sci Agric Sin 43, 932-941. (in Chinese) |
云菲, 刘国顺, 史宏志, 宋晶 (2010). 光氮互作对烤烟光合作用及叶绿素荧光特性的影响. 中国农业科学 43, 932-941. | |
[106] | Zhang JR, Stankey RJ, Vierstra RD (2013). Structure- guided engineering of plant phytochrome B with altered photochemistry and light signaling. Plant Physiol 161, 1445-1457. |
[107] | Zhang MY, Kong DX, Wang HY (2023). Genomic landscape of maize domestication and breeding improvement. Seed Biol 2, 9. |
[108] | Zhang ZH, Zhang X, Lin ZL, Wang J, Xu ML, Lai JS, Yu JM, Lin ZW (2018). The genetic architecture of nodal root number in maize. Plant J 93, 1032-1044. |
[109] | Zhao XY, Liu HJ, Wei XM, Wu LC, Cheng FF, Ku L, Zhang ZZ, Han ZP, Cao LR, Cui XJ, Chen YH (2014). Promoter region characterization of ZmPhyB2 associated with the photoperiod-dependent floral transition in maize (Zea mays L.). Mol Breed 34, 1413-1422. |
[110] | Zhao YP, Zhao BB, Wu GX, Ma XJ, Wang BB, Kong DX, Wei HB, Wang HY (2022). Creation of two hyperactive variants of phytochrome B1 for attenuating shade avoidance syndrome in maize. J Integr Agric 21, 1253-1265. |
[111] | Zhao YP, Zhao BB, Xie YR, Jia H, Li YX, Xu MY, Wu GX, Ma XJ, Li QQ, Hou M, Li CY, Xia ZC, He G, Xu H, Bai ZJ, Kong DX, Zheng ZG, Liu Q, Liu YT, Zhong JS, Tian F, Wang BB, Wang HY (2023). The evening complex promotes maize flowering and adaptation to temperate regions. Plant Cell 35, 369-389. |
[112] | Zhong SY, Liu HQ, Li Y, Lin ZW (2021). Opposite response of maize ZmCCT to photoperiod due to transposon jumping. Theor Appl Genet 134, 2841-2855. |
[113] | Zhou HS, Tian ZG, Wu JF, Deng YH (1997). Discovery and primary study on the photoperiod sensitive male sterility in maize. Maize Sci 5(3), 1-3. (in Chinese) |
周洪生, 田志国, 吴景锋, 邓迎海 (1997). 玉米光敏雄性不育的发现及初步研究. 玉米科学 5(3), 1-3. |
/
〈 | 〉 |