Chinese Bulletin of Botany ›› 2021, Vol. 56 ›› Issue (2): 138-141.DOI: 10.11983/CBB21040
• COMMENTARIES • Previous Articles Next Articles
Xing Wen1,2, Lian Jin1,2, Hongwei Guo1,2,*()
Received:
2021-02-24
Accepted:
2021-02-26
Online:
2021-03-01
Published:
2021-03-17
Contact:
Hongwei Guo
Xing Wen, Lian Jin, Hongwei Guo. A Sweet Meet—New Mechanism on Nutrient and Hormone Regulation of Plant Growth[J]. Chinese Bulletin of Botany, 2021, 56(2): 138-141.
Figure 1 The mechanism of coordinated regulation of plant growth by nutrition and ethylene signaling Protein kinases CTR1 and TOR can interact and phosphorylate EIN2, respectively, in nutrition-rich medium or ethylene- free environment. When treated with ethylene, inactivation of the receptors leads to the suppression of CTR1 and the phosphorylation levels at two serine residues (S645 and S924) of EIN2 are decreased. EIN2 is therefore cleaved and the C terminus translocates into the nucleus and/or forms P-body in the cytoplasm. Consequently, the master transcription factors EIN3/EIL1 are stabilized and the downstream gene expression is activated (Li et al. 2015; Hao et al. 2017). When nutrition deficiency occurs, TOR is inhibited and the phosphorylation level of a threonine (T657) of EIN2 is decreased, followed by the nuclear shuttling of the full-length EIN2 protein. If it occurs in darkness, EIN3/EIL1 proteins would be promoted, thus to activate the expression of downstream ERF genes and to inhibit hypocotyl elongation. Alternatively, if in light, E2Fa gene expression would be down- regulated, thus to inhibit root meristem cell proliferation. Unbroken lines indicate established interactions, broken lines indicate indirect or hypothetical interactions, arrows indicate stimulatory interactions, bar-headed lines indicate inhibitory interactions.
[1] | Chen RQ, Binder BM, Garrett WM, Tucker ML, Chang C, Cooper B (2011). Proteomic responses in Arabidopsis thaliana seedlings treated with ethylene. Mol Biosyst 7,2637-2650. |
[2] | Depaepe T, Hendrix S, van Rensburg HCJ Van den Ende W, Cuypers A, Van Der Straeten D (2021). At the crossroads of survival and death: the reactive oxygen species-ethylene-sugar triad and the unfolded protein response. Trends Plant Sci 26,338-351. |
[3] | Fu LW, Liu YL, Qin GC, Wu P, Zi HL, Xu ZT, Zhao XD, Wang Y, Li YX, Yang SH, Peng C, Wong CCL, Yoo SD, Zuo ZC, Liu RY, Cho YH, Xiong Y (2021). The TOR- EIN2 axis mediates nuclear signaling to modulate plant growth. Nature 591,288-292. |
[4] | Hagen C, Dent KC, Zeev-Ben-Mordehai T, Grange M, Bosse JB, Whittle C, Klupp BG, Siebert CA, Vasishtan D, Bäuerlein FJB, Cheleski J, Werner S, Guttmann P, Rehbein S, Henzler K, Demmerle J, Adler B, Koszinowski U, Schermelleh L, Schneider G, Enquist LW, Plitzko JM, Mettenleiter TC, Grünewald K (2015). Structural basis of vesicle formation at the inner nuclear membrane. Cell 163,1692-1701. |
[5] | Hao DD, Sun XZ, Ma B, Zhang JS, Guo HW (2017). Ethylene. In: Li JY, Li CY, Smith SM, eds. Hormone Metabolism and Signaling in Plants. London: Academic Press. pp.203-241. |
[6] | Ingargiola C, Duarte GT, Robaglia C, Leprince AS, Meyer C (2020). The plant target of rapamycin: a conductor of nutrition and metabolism in photosynthetic organisms. Genes (Basel) 11, 1285. |
[7] | Ju CL, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang J, Garrett WM, Kessenbrock M, Groth G, Tucker ML, Cooper B, Kieber JJ, Chang C, (2012). CTR1 phos- phorylates the central regulator EIN 2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci USA 109, 19486-19491. |
[8] | Klupp BG, Granzow H, Fuchs W, Keil GM, Finke S, Mettenleiter TC (2007). Vesicle formation from the nuclear membrane is induced by coexpression of two conserved herpesvirus proteins. Proc Natl Acad Sci USA 104,7241-7246. |
[9] | Li WY, Ma MD, Feng Y, Li HJ, Wang YC, Ma YT, Li MZ, An FY, Guo HW (2015). EIN2-directed translational regu- lation of ethylene signaling in Arabidopsis. Cell 163, 670- 683. |
[10] | Pandey BK, Huang GQ, Bhosale R, Hartman S, Sturrock CJ, Jose L, Martin OC, Martin M, Voesenek LACJ, Ljung K, Lynch JP, Brown KM, Whalley WR, Mooney SJ, Zhang DB, Bennett MJ (2021). Plant roots sense soil compaction through restricted ethylene diffusion. Science 371,276-280. |
[11] | Qiao H, Shen ZX, Huang SSC, Schmitz RJ, Urich MA, Briggs SP, Ecker JR (2012). Processing and subcellular trafficking of ER-tethered EIN2 control response to ethy- lene gas. Science 338,390-393. |
[12] | Shen X, Li YL, Pan Y, Zhong SW (2016). Activation of HLS1 by mechanical stress via ethylene-stabilized EIN3 is crucial for seedling soil emergence. Front Plant Sci 7,1571. |
[13] | Wang PC, Zhao Y, Li ZP, Hsu CC, Liu X, Fu LW, Hou YJ, Du YY, Xie SJ, Zhang CG, Gao JH, Cao MJ, Huang XS, Zhu YF, Tang K, Wang XG, Tao WA, Xiong Y, Zhu JK (2018). Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol Cell 69,100-112. |
[14] | Wen X, Zhang CL, Ji YS, Zhao Q, He WR, An FY, Jiang LW, Guo HW (2012). Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res 22,1613-1616. |
[15] | Wu Y, Shi L, Li LW, Fu LW, Liu YL, Xiong Y, Sheen J (2019). Integration of nutrient, energy, light, and hormone signaling via TOR in plants. J Exp Bot 70,2227-2238. |
[16] | Xiong Y, McCormack M, Li L, Hall Q, Xiang CB, Sheen J (2013). Glucose-TOR signaling reprograms the transcriptome and activates meristems. Nature 496,181-186. |
[17] | Yuan XB, Xu P, Yu YD, Xiong Y (2020). Glucose-TOR signaling regulates PIN2 stability to orchestrate auxin gradient and cell expansion in Arabidopsis root. Proc Natl Acad Sci USA 117,32223-32225. |
[18] | Zhong SW, Shi H, Xue C, Wei N, Guo HW, Deng XW (2014). Ethylene-orchestrated circuitry coordinates a seedling’s response to soil cover and etiolated growth. Proc Natl Acad Sci USA 111,3913-3920. |
[19] | Zhu FG, Deng J, Chen H, Liu P, Zheng LH, Ye QY, Li R, Brault M, Wen JQ, Frugier F, Dong JL, Wang T (2020). A cep peptide receptor-like kinase regulates auxin bio- synthesis and ethylene signaling to coordinate root growth and symbiotic nodulation in Medicago truncatula. Plant Cell 32,2855-2877. |
[1] | Yuhua Cen Peng Wang Qingchun Chen Chengyun Zhang Shang Yu Ke Hu Yang Liu Rongbo Xiao. Spatiotemporal characteristics and influencing factors of animal soundscape in urban green spaces [J]. Biodiv Sci, 2023, 31(1): 22359-. |
[2] | Keyi WU Wenda Ruan Difeng Zhou Qingchun Chen Chengyun Zhang Xinyuan Pan Shang Yu Yang Liu Rongbo Xiao. Syllable clustering analysis-based passive acoustic monitoring technology and its application in bird monitoring [J]. Biodiv Sci, 2023, 31(1): 22370-. |
[3] | Ma Haigang Peng-lai Fan. Application, progress, and future perspective of passive acoustic monitoring in terrestrial mammal research [J]. Biodiv Sci, 2023, 31(1): 22374-. |
[4] | Shizheng Wang Yifei Sun Zhenzhen Li Yue Shu Jiawei Feng Tianming Wang. Effects of bird migration on the temporal patterns of the wetland soundscape in the downstream region of the Tumen River Basin of China [J]. Biodiv Sci, 2023, 31(1): 22337-. |
[5] | Hao Dong Ziyi Ke Yatao Wu Junqi Miao Fang Zhang. Changes in vocal characteristics of male concave-eared torrent frogs (Odorrana tormota) in different chorus tides [J]. Biodiv Sci, 2023, 31(1): 22217-. |
[6] | Yifei Sun Shizheng Wang Jiawei Feng Tianming Wang. Diel and seasonal variability of the forest soundscape in the Northeast China Tiger and Leopard National Park [J]. Biodiv Sci, 2023, 31(1): 22523-. |
[7] | Yimei Zhang Yanyi Wang Yan He Bing Zhou Miao Tian Canwei Xia. Characteristics and applications of beta acoustic indices [J]. Biodiv Sci, 2023, 31(1): 22513-. |
[8] | Zhishu Xiao Jianguo Cui Daiping Wang zhitao Wang Jinhong Luo Jie Xie. Interdisciplinary development trends of contemporary bioacoustics and the opportunities for China [J]. Biodiv Sci, 2023, 31(1): 22423-. |
[9] | Qi Bian Cheng Wang He Cheng Dan Han Yilin Zhao Luqin Yin. Exploring the application of acoustic indices in the assessment of bird diversity in urban forests [J]. Biodiv Sci, 2023, 31(1): 22080-. |
[10] | Yi Wei, Guangshun Jiang. Overview of monitoring methods for tigers, leopards and ungulate prey [J]. Biodiv Sci, 2022, 30(9): 21551-. |
[11] | Moyan Chu, Shujie Liang, Peiyun Li, Ding Jia, Abudusaimaiti Maierdiyali, Xueyang Li, Nan Jiang, Xiang Zhao, Faxiang Li, Lingyun Xiao, Zhi Lü. Population dynamic of snow leopard (Panthera uncia) in Yunta Village, Sanjiangyuan National Nature Reserve, China [J]. Biodiv Sci, 2022, 30(9): 22157-. |
[12] | Xueqin Deng, Tong Liu, Tianshi Liu, Kai Xu, Song Yao, Xiaoqun Huang, Zhishu Xiao. Seasonal variation of daily activity rhythm of leopard cats (Prionailurus bengalensis) and their potential prey in Neixiang Baotianman National Nature Reserve of Henan Province, China [J]. Biodiv Sci, 2022, 30(9): 22263-. |
[13] | Chunpeng Guo, Maojun Zhong, Xiaoyi Wang, Shengnan Yang, Ke Tang, Lele Jia, Chunlan Zhang, Junhua Hu. An updated species checklist of amphibians and reptiles in Fujian Province, China [J]. Biodiv Sci, 2022, 30(8): 22090-. |
[14] | Bing Yan, Qing Lu, Song Xia, Junsheng Li. An overview of advances in soil microbial diversity of urban environment [J]. Biodiv Sci, 2022, 30(8): 22186-. |
[15] | Shihang Zhang, Ye Tao, Yusen Chen, Hao Guo, Yongxing Lu, Xing Guo, Chaohong Liu, Xiaobing Zhou, Yuanming Zhang. Spatial pattern of soil multifunctionality and its correlation with environmental and vegetation factors in the Junggar Desert, China [J]. Biodiv Sci, 2022, 30(8): 22097-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||