Chinese Bulletin of Botany ›› 2021, Vol. 56 ›› Issue (3): 339-346.DOI: 10.11983/CBB20180
Previous Articles Next Articles
Xiaomin Cui1,2, Dongchao Ji1,2, Tong Chen1,*(), Shiping Tian1,2
Received:
2020-11-11
Accepted:
2021-02-25
Online:
2021-05-01
Published:
2021-04-30
Contact:
Tong Chen
Xiaomin Cui, Dongchao Ji, Tong Chen, Shiping Tian. Advances in the Studies on Molecular Mechanism of Receptor-like Protein Kinase FER Regulating Host Plant-pathogen Interaction[J]. Chinese Bulletin of Botany, 2021, 56(3): 339-346.
Figure 1 A schematic diagram of the disease resistance pathway mediated by FER The microdomain-localized FER in the plasma membrane can recognize F-RALF secreted by Fusarium oxysporium and further block AHA2-mediated H+ outflow, thus inducing the alkalinization of extracellular environment and increasing the pathogenicity of F. oxysporium. During this process, Fmk1 in the mitogen-activated protein kinase (MAPK) pathway in F. oxysporium cells is critical for infection. FER interacts with RALF23, negatively regulating JA and COR signals and positively promoting plant immunity; the SITE-1 protease (S1P) can digest endogenous fast alkalization factor (RALF) precursor peptide and the mature RALF further interacts with FER to inhibit the formation of immune complexes (mainly FLS2, BAK1, and EFR), inhibits plant immunity. FER may regulate intracellular ROS accumulation and MAPK signaling. F-RALF: F. oxysporium RALF; AHA2: H+-ATPase 2; RIPK: RESISTANCE TO Pseudomonas syringae pv. maculicola 1-INDUCED PROTEIN KINASE; Fmk1: A con- served fungal MAPK; flg22: Flagellin epitope 22; RALF23: The endogenous peptide RALF 23; MYC2: MYELOCYTOMATOSIS PROTEINS 2; EFR: ELONGATION FACTOR THERMO UNSTABLE RECEPTOR; FLS2: FLAGELLIN-SENSING 2; BAK1: BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1; RLCK: Receptor-like cytoplasmic kinase; MAPK: Mitogenactivated protein kinase; NADPH: Nicotinamide adenine dinucleotide phosphate
互作蛋白 | 涉及物种 | 配体 | 主要功能/结论 | 参考文献 |
---|---|---|---|---|
FER与病原菌分泌的 F-RALF互作 | 拟南芥(Arabidopsis thaliana)和尖孢镰刀菌(Fusarium oxysporium) | F-RALF | FER识别尖孢镰刀菌分泌的F- RALF, 阻断质膜H+-ATPase2诱导胞外环境碱化, 从而负调控拟南芥对尖孢镰刀菌的抗性 | |
FER与转录因子MYC2 互作 | 拟南芥和丁香假单胞杆菌番茄致病变种(Pseudomonas syrin- gae pv. tomato DC3000) | RALF23 | FER正调控拟南芥对Pst DC3000 的抗性 | |
FER与FLS2、EFR和BAK1形成免疫复合体 | 拟南芥 | RALF23 | 拟南芥SITE-1蛋白酶剪切内源性快速碱化因子(RALF)前肽, 抑制植物免疫 | |
FER与MLO家族成员NORTIA协同作用 | 拟南芥和高氏白粉病(Golovinomyces orontii) | FER负调节拟南芥对高氏白粉病的抗性 | ||
FER与FLS2和BAK1互作 | 拟南芥和丁香假单胞杆菌番茄致病变种 | RALF23 | fer突变体出现氧化爆发、MAPK活性、气孔开合和细胞死亡等方面的功能缺陷 |
Table 1 FER regulates the interaction between host plant cells and pathogens
互作蛋白 | 涉及物种 | 配体 | 主要功能/结论 | 参考文献 |
---|---|---|---|---|
FER与病原菌分泌的 F-RALF互作 | 拟南芥(Arabidopsis thaliana)和尖孢镰刀菌(Fusarium oxysporium) | F-RALF | FER识别尖孢镰刀菌分泌的F- RALF, 阻断质膜H+-ATPase2诱导胞外环境碱化, 从而负调控拟南芥对尖孢镰刀菌的抗性 | |
FER与转录因子MYC2 互作 | 拟南芥和丁香假单胞杆菌番茄致病变种(Pseudomonas syrin- gae pv. tomato DC3000) | RALF23 | FER正调控拟南芥对Pst DC3000 的抗性 | |
FER与FLS2、EFR和BAK1形成免疫复合体 | 拟南芥 | RALF23 | 拟南芥SITE-1蛋白酶剪切内源性快速碱化因子(RALF)前肽, 抑制植物免疫 | |
FER与MLO家族成员NORTIA协同作用 | 拟南芥和高氏白粉病(Golovinomyces orontii) | FER负调节拟南芥对高氏白粉病的抗性 | ||
FER与FLS2和BAK1互作 | 拟南芥和丁香假单胞杆菌番茄致病变种 | RALF23 | fer突变体出现氧化爆发、MAPK活性、气孔开合和细胞死亡等方面的功能缺陷 |
1 | 季东超, 宋凯, 邢晶晶, 陈彤, 田世平 (2015). LysM蛋白介导植物免疫防卫反应及其信号激发的研究进展. 植物学报 50, 628-636. |
2 | 朱巍巍, 马天意, 张梅娟, 沙伟 (2018). 类受体蛋白激酶在植物中的研究进展. 基因组学与应用生物学 37, 451-458. |
3 | Chen J, Liu SR, Ming ZH, Liu XM, Yu F (2020). FERONIA cytoplasmic domain: node of varied signal outputs. aBIO- TECH 1, 135-146. |
4 |
Cheung AY, Wu HM (2011). Theseus 1, FERONIA and relatives: a family of cell wall-sensing receptor kinases? Curr Opin Plant Biol 14, 632-641.
DOI URL |
5 |
Deslauriers SD, Larsen PB (2010). FERONIA is a key modulator of brassinosteroid and ethylene responsiveness in Arabidopsis hypocotyls. Mol Plant 3, 626-640.
DOI PMID |
6 |
Duan QH, Kita D, Li C, Cheung AY, Wu HM (2010). FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc Natl Acad Sci USA 107, 17821-17826.
DOI URL |
7 |
Duan QL, Liu MCJ, Kita D, Jordan SS, Yeh FLJ, Yvon R, Carpenter H, Federico AN, Garcia-Valencia LE, Eyles SJ, Wang CS, Wu HM, Cheung AY (2020). FERONIA controls pectin- and nitric oxide-mediated male-female interaction. Nature 579, 561-566.
DOI URL |
8 |
Escobar-Restrepo JM, Huck N, Kessler S, Gagliardini V, Gheyselinck J, Yang WC, Grossniklaus U (2007). The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. Science 317, 656-660.
DOI URL |
9 |
Gjetting SK, Mahmood K, Shabala L, Kristensen A, Shabala S, Palmgren M, Fuglsang AT (2020). Evidence for multiple receptors mediating RALF-triggered Ca 2+ sig- naling and proton pump inhibition. Plant J 104, 433-446.
DOI URL |
10 |
Guo HQ, Li L, Ye HX, Yu XF, Algreen A, Yin YH (2009). Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. Proc Natl Acad Sci USA 106, 7648-7653.
DOI URL |
11 |
Guo HQ, Nolan TM, Song GY, Liu SZ, Xie ZL, Chen JN, Schnable PS, Walley JW, Yin YH (2018). FERONIA receptor kinase contributes to plant immunity by suppres- sing jasmonic acid signaling in Arabidopsis thaliana. Curr Biol 28, 3316-3324.
DOI URL |
12 |
Huang GQ, Li E, Ge FR, Li S, Wang Q, Zhang CQ, Zhang Y (2013). Arabidopsis RopGEF4 and RopGEF10 are important for FERONIA-mediated developmental but not environmental regulation of root hair growth. New Phytol 200, 1089-1101.
DOI URL |
13 |
Huang YY, Liu XX, Xie Y, Lin XY, Hu ZJ, Wang H, Wang LF, Dang WQ, Zhang LL, Zhu Y, Feng H, Pu M, Zhao JQ, Zhang JW, Li Y, Fan J, Wang WM (2020 a). Identification of FERONIA-like receptor genes involved in rice- Magnaporthe oryzae interaction. Phytopathol Res 2, 14.
DOI URL |
14 |
Huang YY, Yin CC, Liu J, Feng BM, Ge DD, Kong L, Ortiz-Morea FA, Richter J, Hauser MT, Wang WM, Shan LB, He P (2020b). A trimeric CrRLK1L-LLG1 complex genetically modulates SUMM2-mediated autoimmunity. Nat Commun 11, 4859.
DOI URL |
15 |
Huck N, Moore JM, Federer M, Grossniklaus U (2003). The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Development 130, 2149-2159.
DOI URL |
16 |
Ji DC, Chen T, Zhang ZQ, Li BQ, Tian SP (2020b). Versatile roles of the receptor-like kinase feronia in plant growth, development and host-pathogen interaction. Int J Mol Sci 21, 7881.
DOI URL |
17 |
Ji DC, Cui XM, Qin GZ, Chen T, Tian SP (2020a). SlFERL interacts with S-adenosylmethionine synthetase to regulate fruit ripening. Plant Physiol 184, 2168-2181.
DOI URL |
18 |
Jia MR, Ding N, Zhang Q, Xing SN, Wei LZ, Zhao YY, Du P, Mao WW, Li JZ, Li BB, Jia WS (2017a). A FERONIA-like receptor kinase regulates strawberry (Fragaria × ananassa) fruit ripening and quality formation. Front Plant Sci 8, 1099.
DOI URL |
19 |
Jia MR, Du P, Ding N, Zhang Q, Xing SN, Wei LZ, Zhao YY, Mao WW, Li JZ, Li BB, Jia WS (2017b). Two FERONIA-like receptor kinases regulate apple fruit ripe- ning by modulating ethylene production. Front Plant Sci 8, 1406.
DOI URL |
20 |
Jose J, Ghantasala S, Choudhury SR (2020). Arabidopsis transmembrane receptor-like kinases (RLKs): a bridge between extracellular signal and intracellular regulatory machinery. Int J Mol Sci 21, 4000.
DOI URL |
21 |
Keinath NF, Kierszniowska S, Lorek J, Bourdais G, Kessler SA, Shimosato-Asano H, Grossniklaus U, Schulze WX, Robatzek S, Panstruga R (2010). PAMP (pathogen-associated molecular pattern)-induced changes in plasma membrane compartmentalization reveal novel components of plant immunity. J Biol Chem 285, 39140-39149.
DOI URL |
22 |
Kessler SA, Shimosato-Asano H, Keinath NF, Wuest SE, Ingram G, Panstruga R, Grossniklaus U (2010). Conserved molecular components for pollen tube reception and fungal invasion. Science 330, 968-971.
DOI URL |
23 |
Li S, Zhang Y (2014). To grow or not to grow: FERONIA has her say. Mol Plant 7, 1261-1263.
DOI URL |
24 |
Liu J, Huang YY, Kong L, Yu X, Feng BM, Liu DR, Zhao BY, Mendes GC, Yuan PG, Ge DD, Wang WM, Fontes EPB, Li PW, Shan LB, He P (2020). The malectin-like receptor-like kinase LETUM1 modulates NLR protein SUMM2 activation via MEKK2 scaffolding. Nat Plants 6, 1106-1115.
DOI URL |
25 |
Mao DD, Yu F, Li J, Van de Poel B, Tan D, Li JL, Liu YQ, Li XS, Dong MQ, Chen LB, Li DP, Luan S (2015). FERONIA receptor kinase interacts with S-adenosylme- thionine synthetase and suppresses S-adenosylme-thio- nine production and ethylene biosynthesis in Arabidopsis. Plant Cell Environ 38, 2566-2574.
DOI URL |
26 |
Masachis S, Segorbe D, Turrà D, Leon-Ruiz M, Fürst U, El Ghalid M, Leonard G, López-Berges MS, Richards TA, Felix G, Di Pietro A (2016). A fungal pathogen secretes plant alkalinizing peptides to increase infection. Nat Microbiol 1, 16043.
DOI PMID |
27 |
Ngo QA, Vogler H, Lituiev DS, Nestorova A, Grossniklaus U (2014). A calcium dialog mediated by the FERONIA signal transduction pathway controls plant sperm delivery. Dev Cell 29, 491-500.
DOI URL |
28 |
Shih HW, Miller ND, Dai C, Spalding EP, Monshausen GB (2014). The receptor-like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings. Curr Biol 24, 1887-1892.
DOI URL |
29 |
Shiu SH, Karlowski WM, Pan RS, Tzeng YH, Mayer KFX, Li WH (2004). Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16, 1220-1234.
DOI URL |
30 |
Stegmann M, Monaghan J, Smakowska-Luzan E, Rove- nich H, Lehner A, Holton N, Bellkhadir Y, Zipfel C (2017). The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science 355, 287-289.
DOI URL |
31 |
Tang DZ, Wang GX, Zhou JM (2017). Receptor kinases in plant-pathogen interactions: more than pattern recognition. Plant Cell 29, 618-637.
DOI URL |
32 |
Xin XF, He SY (2013). Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Annu Rev Phytopathol 51, 473-498.
DOI URL |
33 |
Yu F, Qian LC, Nibau C, Duan QH, Kita D, Levasseur K, Li XQ, Lu CQ, Li H, Hou CC, Li LG, Buchanan BB, Chen LB, Cheung AY, Li DP, Luan S (2012). FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase. Proc Natl Acad Sci USA 109, 14693-14698.
DOI URL |
34 | Yu M, Li RL, Cui YN, Chen WJ, Li B, Zhang X, Bu YF, Cao YY, Xing JJ, Jewaria PK, Li XJ, Bhalerao RP, Yu F, Lin JX (2020). The RALF1-FERONIA interaction modulates endocytosis to mediate control of root growth in Arabidopsis. Development 147, dev189902. |
35 |
Zhang X, Peng H, Zhu SR, Xing JJ, Li X, Zhu ZZ, Zheng JY, Wang L, Wang BQ, Chen J, Ming ZH, Yao K, Jian JZ, Luan S, Coleman-Derr D, Liao HD, Peng YS, Peng DL, Yu F (2020a). Nematode-encoded RALF peptide mi- mics facilitate parasitism of plants through the FERONIA receptor kinase. Mol Plant 13, 1434-1454.
DOI URL |
36 |
Zhang X, Yang ZH, Wu DS, Yu F (2020b). RALF-FERONIA signaling: linking plant immune response with cell growth. Plant Commun 1, 100084.
DOI URL |
37 |
Zhao CZ, Zayed O, Yu ZP, Jiang W, Zhu PP, Hsu CC, Zhang LR, Tao WA, Lozano-Durán R, Zhu JK (2018). Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proc Natl Acad Sci USA 115, 13123-13128.
DOI URL |
38 |
Zheng XY, Spivey NW, Zeng WQ, Liu PP, Fu ZQ, Klessig DF, He SY, Dong XN (2012). Coronatine promotes Pseu- domonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 11, 587-596.
DOI URL |
[1] | Yuying Zhou, Hui Chen, Simu Liu. Advances in Auxin Response of Non-canonical Aux/IAA Proteins in Plants [J]. Chinese Bulletin of Botany, 2024, 59(4): 0-0. |
[2] | Lumei He, Bojun Ma, Xifeng Chen. Advances on the Executor Resistance Genes in Plants [J]. Chinese Bulletin of Botany, 2024, 59(4): 0-0. |
[3] | Miao Li, Chenyang Yao, Xiaoyong Chen. Application of environmental RNA technology in aquatic biological monitoring [J]. Biodiv Sci, 2023, 31(5): 23062-. |
[4] | Qi Wang, Yunzhe Wu, Xueying Liu, Lili Sun, Hong Liao, Xiangdong Fu. The Rice Receptor-like Kinases Function as Key Regulators of Plant Development and Adaptation to the Environment [J]. Chinese Bulletin of Botany, 2023, 58(2): 199-213. |
[5] | Xiang Liu, Mu Liu, Yao Xiao. The effect of foliar fungal pathogens on plant species coexistence: Progress and challenges [J]. Biodiv Sci, 2023, 31(2): 22525-. |
[6] | Cai Chang, Zhang Xue, Zhu Chen, Zhao Yuhao, Qiao Gexia, Ding Ping. Nested assemblages of aphid species in the Thousand Island Lake: The importance of island area and host plant diversity [J]. Biodiv Sci, 2023, 31(12): 23183-. |
[7] | Haidi Qi, Dinghai Zhang, Lishan Shan, Guopeng Chen, Bo Zhang. Advances in the mechanisms of entomopathogenic fungi infecting insect hosts and the defense strategies of insects [J]. Biodiv Sci, 2023, 31(11): 23273-. |
[8] | ZHAO Rong-Jiang, CHEN Tao, DONG Li-Jia, GUO Hui, MA Hai-Kun, SONG Xu, WANG Ming-Gang, XUE Wei, YANG Qiang. Progress of plant-soil feedback in ecology studies [J]. Chin J Plant Ecol, 2023, 47(10): 1333-1355. |
[9] | Jiman Li, Nan Jin, Maogang Xu, Jusong Huo, Xiaoyun Chen, Feng Hu, Manqiang Liu. Effects of earthworm on tomato resistance under different drought levels [J]. Biodiv Sci, 2022, 30(7): 21488-. |
[10] | Lixia Jia, Yanhua Qi. Advances in the Regulation of Rice (Oryza sativa) Grain Shape by Auxin Metabolism, Transport and Signal Transduction [J]. Chinese Bulletin of Botany, 2022, 57(3): 263-275. |
[11] | SHI Xin-Jian, ZHANG Jing-Xin, QIN Tian-Zi, LIU Jin-Ming, GAO Yu-Bao, REN An-Zhi. Effects of endophyte infection on fungal disease resistance of Achnatherum sibiricum and non-symbiotic neighbours [J]. Chin J Plant Ecol, 2021, 45(8): 860-869. |
[12] | Tianxingzi Wang, Zheng Zhu, Yue Chen, Yuqing Liu, Gaowei Yan, Shan Xu, Tong Zhang, Jinjiao Ma, Shijuan Dou, Liyun Li, Guozhen Liu. Rice OsWRKY42 is a Novel Element in Xa21-mediated Resistance Pathway Against Bacterial Leaf Blight [J]. Chinese Bulletin of Botany, 2021, 56(6): 687-698. |
[13] | Manru Li, Ling Zhang. Overview of the reproductive phenology of mistletoes [J]. Biodiv Sci, 2020, 28(7): 833-841. |
[14] | Chenghuizi Yang,Xianyu Tang,Wei Li,Shitou Xia. NLR and Its Regulation on Plant Disease Resistance [J]. Chinese Bulletin of Botany, 2020, 55(4): 497-504. |
[15] | Yaning Cui, Hongping Qian, Yanxia Zhao, Xiaojuan Li. Intracellular Trafficking in Pattern Recognition Receptor-triggered Plant Immunity [J]. Chinese Bulletin of Botany, 2020, 55(3): 329-339. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||