Chinese Bulletin of Botany ›› 2020, Vol. 55 ›› Issue (4): 505-512.DOI: 10.11983/CBB19093
• SPECIAL TOPICS • Previous Articles Next Articles
Xin Wang1,*(),Zhongjian Liu2,3,Wenzhe Liu4,Wenbo Liao5,Xin Zhang6,Zhong Liu7,Guangwan Hu8,9,Xuemin Guo10,Yaling Wang11
Received:
2019-05-21
Accepted:
2020-04-15
Online:
2020-07-01
Published:
2020-05-21
Contact:
Xin Wang
Xin Wang,Zhongjian Liu,Wenzhe Liu,Wenbo Liao,Xin Zhang,Zhong Liu,Guangwan Hu,Xuemin Guo,Yaling Wang. Stepping out of the Shadow of Goethe: for a More Scientific Plant Systematics[J]. Chinese Bulletin of Botany, 2020, 55(4): 505-512.
[1] | 王鑫 (2018). 被子植物的曙光: 揭秘花的起源及陆地植物生殖器官的演化. 北京: 科学出版社. pp. 348. |
[2] |
王鑫, 刘仲健, 刘文哲, 张鑫, 郭学民, 胡光万, 张寿洲, 王亚玲, 廖文波 (2015). 突破当代植物系统学的困境. 科技导报 33(22), 97-105.
DOI URL |
[3] | Arber A (1938). Herbals, Their Origin and Evolution, A Chapter in the History of Botany 1470-1670. London: Cambridge University Press. pp. 358. |
[4] | Arber A (1946). Introduction to Goethe’s botany. Chron Bot 10, 63-87. |
[5] |
Arber EAN, Parkin J (1907). On the origin of angiosperms. Bot J Linn Soc 38, 29-80.
DOI URL |
[6] |
Bessey CE (1897). Phylogeny and taxonomy of the angiosperms. Bot Gaz 24, 145-178.
DOI URL |
[7] | Canright JE (1960). The comparative morphology and relationships of the Magnoliaceae. III. Carpels. Am J Bot 47, 145-155. |
[8] | Crane PR, Herendeen PS, Herrera F, Shi G (2018). Diversity and homologies of corystosperm seed-bearing structures from the Early Cretaceous of Mongolia and China. In: McElwain J, ed. 10th European Palaeobotany & Palynology Conference. Dublin: Trinity College Dublin. pp. 88. |
[9] | Cronquist A (1988). The Evolution and Classification of Flowering Plants. Bronx: New York Botanical Garden. pp. 555. |
[10] | Dilcher DL, Crane PR (1984). Archaeanthus: an early angiosperm from the Cenomanian of the Western Interior of North America. Ann Missour Bot Gard 71, 351-383. |
[11] | Doyle JA, Endress PK (2000). Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. Int J Plant Sci 161, S121-S153. |
[12] | Eames AJ (1926). The role of flower anatomy in the determination of angiosperm phylogeny. In: International Congress of Plant Sciences, Section of Morphology, Histology, and Paleobotany. New York:Ithaca. pp. 423-427. |
[13] | Eames AJ (1961). Morphology of the Angiosperms. New York: McGraw-Hill Book Company, Inc. pp. 518. |
[14] | Eames AJ, MacDaniels LH (1947). An Introduction to Plant Anatomy. New York: McGraw-Hill Book Company, Inc. pp. 427. |
[15] | Edwards D (2003). Embryophytic sporophytes in the Rhynie and Windy field cherts. Trans Royal Soc Edinb Earth Sci 94, 397-410. |
[16] |
Endress PK (2005). Carpels in Brasenia (Cabombaceae) are completely ascidiate despite a long stigmatic crest. Ann Bot 96, 209-215.
DOI URL |
[17] | Endress PK (2019). The morphological relationship between carpels and ovules in angiosperms: pitfalls of morphological interpretation. Bot J Linn Soc 189, 201-227. |
[18] |
Endress PK, Doyle JA (2009). Reconstructing the ancestral angiosperm flower and its initial specializations. Am J Bot 96, 22-66.
URL PMID |
[19] | Friis EM, Pedersen KR, Von Balthazar M, Grimm GW, Crane PR (2009). Monetianthus mirus gen. et sp. nov., a nymphaealean flower from the Early Cretaceous of Portugal. Int J Plant Sci 170, 1086-1101. |
[20] |
Guo XM, Xiao X, Wang GX, Gao RF (2013). Vascular anatomy of kiwi fruit and its implications for the origin of carpels. Front Plant Sci 4, 391.
DOI URL PMID |
[21] |
Guo XM, Yu YY, Bai L, Gao RF (2017). Dianthus chinensis L: the sructural difference between vascular bundles in the placenta and ovary wall suggests their different origin. Front Plant Sci 8, 1986.
DOI URL PMID |
[22] | Han G, Fu X, Liu ZJ, Wang X (2013). A new angiosperm genus from the Lower Cretaceous Yixian Formation, Western Liaoning, China. Acta Geol Sin (English Edition) 87, 916-925. |
[23] | Han G, Liu Z, Wang X (2017). A Dichocarpum-like angiosperm from the Early Cretaceous of China. Acta Geol Sin (English Edition) 90, 1-8. |
[24] | Hao S, Xue J (2013). The Early Devonian Posongchong Flora of Yunnan. Beijing: Science Press. pp. 366. |
[25] |
Herendeen PS, Friis EM, Pedersen KR, Crane PR (2017). Palaeobotanical redux: revisiting the age of the angiosperms. Nat Plants 3, 17015.
URL PMID |
[26] | Hutchinson J (1926). The phylogeny of flowering plants. In: International Congress of Plant Sciences, Section of Morphology, Histology, and Paleobotany. New York: Ithaca. pp. 413-421. |
[27] | Hutchinson J (1968). Key to the Families of Flowering Plants of the World, 2nd edn. Oxford: Clarendon Press. pp. 117. |
[28] | Ji Q, Li H, Bowe M, Liu Y, Taylor DW (2004). Early Cretaceous Archaefructus eoflora sp. nov. with bisexual flowers from Beipiao, Western Liaoning, China. Acta Geol Sin (English Edition) 78, 883-892. |
[29] |
Liu WZ, Hilu K, Wang YL (2014). From leaf and branch into a flower: Magnolia tells the story. Bot Stud 55, 28.
DOI URL PMID |
[30] | Liu ZJ, Wang X (2017). Yuhania: a unique angiosperm from the Middle Jurassic of Inner Mongolia, China. Histor Biol 29, 431-441. |
[31] | Liu ZJ, Wang X (2018). A novel angiosperm from the Early Cretaceous and its implications for carpel-deriving. Acta Geol Sin (English Edition) 92, 1293-1298. |
[32] |
Mathews S, Kramer EM (2012). The evolution of reproductive structures in seed plants: a re-examination based on insights from developmental genetics. New Phytol 194, 910-923.
DOI URL PMID |
[33] | Mendes MM, Grimm GW, Pais J, Friis EM (2014). Fossil Kajanthus lusitanicus gen. et sp. nov. from Portugal: floral evidence for Early Cretaceous Lardizabalaceae (Ranunculales, basal eudicot). Grana 53, 283-301. |
[34] | Miao Y, Liu ZJ, Wang M, Wang X (2017). Fossil and living cycads say "No more megasporophylls". J Morphol Anat 1, 1000107. |
[35] |
Parkin J (1925). The phylogenetic classification of flowering plants. Nature 115, 385-387.
DOI URL |
[36] |
Roe JL, Nemhauser JL, Zambryski PC (1997). TOUSLED participates in apical tissue formation during gynoecium development in Arabidopsis. Plant Cell 9, 335-353.
DOI URL PMID |
[37] |
Rounsley SD, Ditta GS, Yanofsky MF (1995). Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7, 1259-1269.
URL PMID |
[38] |
Shi G, Crane PR, Herendeen PS, Ichinnorov N, Takahashi M, Herrera F (2019). Diversity and homologies of corystosperm seedbearing structures from the Early Cretaceous of Mongolia. J Syst Palaeontol 17, 997-1029.
DOI URL |
[39] |
Shi G, Leslie AB, Herendeen PS, Herrera F, Ichinnorov N, Takahashi M, Knopf P, Crane PR (2016). Early Cretaceous Umkomasia from Mongolia: implications for homology of corystosperm cupules. New Phytol 210, 1418-1429.
URL PMID |
[40] |
Skinner DJ, Hill TA, Gasser CS (2004). Regulation of ovule development. Plant Cell 16, S32-S45.
URL PMID |
[41] |
Sun G, Dilcher DL, Zheng S, Zhou Z (1998). In search of the first flower: a Jurassic angiosperm, Archaefructus, from Northeast China. Science 282, 1692-1695.
DOI URL PMID |
[42] |
Sun G, Ji Q, Dilcher DL, Zheng S, Nixon KC, Wang X (2002). Archaefructaceae, a new basal angiosperm family. Science 296, 899-904.
DOI URL PMID |
[43] | Takhtajan A (1969). Flowering Plants, Origin and Dispersal. Edinburgh: Oliver & Boyd Ltd. pp. 301. |
[44] | Takhtajan A (1980). Outline of the classification of flowering plants (magnoliophyta). Bot Rev 46, 225-359. |
[45] | Takhtajan A (1997). Diversity and Classification of Flowering Plants. New York: Columbia University Press. pp. 643. |
[46] | von Goethe JWV (1790). Versuch die Metamorphose der Pflanzen zu erklären. Gotha: Carl Wilhelm Ettinger. pp. 68. |
[47] | Wang X (2010). The Dawn Angiosperms: Uncovering the Origin of Flowering Plants. Heidelberg: Springer. pp. 236. |
[48] | Wang X (2018a). The Dawn Angiosperms: Uncovering the Origin of Flowering Plants, 2nd edn. Cham: Springer. pp. 407. |
[49] | Wang X (2018b). An era of errors: unveiling the truth of Archaeanthus and its implications for angiosperm systematics. ChinaXiv 201804. 201934. |
[50] | Wang X, Luo B (2013). Mechanical pressure, not genes, makes ovulate parts leaf-like in Cycas. Am J Plant Sci 4, 53-57. |
[51] | Wang X, Wang S (2010). Xingxueanthus: an enigmatic Jurassic seed plant and its implications for the origin of angiosperm. Acta Geol Sin (English Edition) 84, 47-55. |
[52] |
Wang X, Zheng XT (2012). Reconsiderations on two characters of early angiosperm Archaefructus. Palaeoworld 21, 193-201.
DOI URL |
[53] | Wieland GR (1906). American Fossil Cycads. Washington: The Wilkens Sheiry Printing Co. pp. 295. |
[54] |
Zhang X, Liu W, Wang X (2017). How the ovules get enclosed in magnoliaceous carpels. PLoS One 12, e0174955.
URL PMID |
[55] |
Zhang X, Zhang Z, Zhao Z (2019). Floral ontogeny of Illicium lanceolatum (Schisandraceae) and its implications on carpel homology. Phytotaxa 416, 200-210.
DOI URL |
[1] | nianxun xi Yuan-Ye Zhang Shu-Rong ZHOU. Plant-soil feedbacks in community ecology [J]. Chin J Plant Ecol, 2023, 47(预发表): 0-0. |
[2] | ZOU Jin-Lian, ZHANG Zhi-Qiang. Application and progress of sexual selection and sexual conflict theory in plant reproductive evolutionary ecology [J]. Chin J Plant Ecol, 2022, 46(9): 984-994. |
[3] | Yajun Sun. Why do we believe in Darwin’s theory of evolution—On the 25 folds of aesthetic parsimony of On the Origin of Species [J]. Biodiv Sci, 2022, 30(9): 22243-. |
[4] | Ke Liu, Sicheng Han, He Yu, Shu-Jin Luo. The evolutionary genetics, taxonomy, and conservation of the Chinese mountain cat [J]. Biodiv Sci, 2022, 30(9): 22396-. |
[5] | Song Ge. A review of recent studies of plant systematics and evolution in China [J]. Biodiv Sci, 2022, 30(7): 22385-. |
[6] | Yunyun Wang, Zhanqing Hao. Angiosperm sexual systems-Concepts, evolution, ecology, and future directions [J]. Biodiv Sci, 2022, 30(7): 22065-. |
[7] | Shumei Zhang, Wei Li, Dingnan Li. Inventory of species diversity of Liaoning higher plants [J]. Biodiv Sci, 2022, 30(6): 22038-. |
[8] | Linbo Jia, Tao Su, Weicheng Li, Shufeng Li, Yongjiang Huang, Zhekun Zhou. The floristic differentiation of Southwest China: Insights from Cedrelospermum and Ailanthus fossils [J]. Biodiv Sci, 2022, 30(11): 22348-. |
[9] | Shaopeng Wang, Mingyu Luo, Yanhao Feng, Chengjin Chu, Dayong Zhang. Theoretical advances in biodiversity research [J]. Biodiv Sci, 2022, 30(10): 22410-. |
[10] | Cheng Xue, Boka Li, Tianyu Lei, Hongyan Shan, Hongzhi Kong. Advances on the origin and evolution of biodiversity [J]. Biodiv Sci, 2022, 30(10): 22460-. |
[11] | Jian Zhang, Hongzhi Kong, Xiaolei Huang, Shenglei Fu, Liangdong Guo, Qinghua Guo, Fumin Lei, Zhi Lü, Yurong Zhou, Keping Ma. Thirty key questions for biodiversity science in China [J]. Biodiv Sci, 2022, 30(10): 22609-. |
[12] | Mingxian Deng, Heyan Huang, Shiyun Shen, Jihua Wu, Qiong La, Tsechoe Dorji, Xiaoyun Pan. Phenotypic plasticity of Alternanthera philoxeroides in response to simulated daily warming in the Tibet Plateau in introduced vs. native populations [J]. Biodiv Sci, 2021, 29(9): 1198-1205. |
[13] | Meng Wang, Ting Wang, Zengqiang Xia, Tingzhang Li, Xiaohua Jin, Yuehong Yan, Jianbing Chen. Revealing the New Whole-genome Duplication Event of Four Paphiopedilum Species Based on Transcriptome Data [J]. Chinese Bulletin of Botany, 2021, 56(6): 699-714. |
[14] | Wenjing Zhang, Xiaomeng Yang, Kan Gao, Xinyi Wei, Xuetong Shi, Ruixuan Wang, Fengxia Wu, Juqing Kang. Analysis on the Evolution and Transcription Activation Activity of ABI4 in Brassicaceae [J]. Chinese Bulletin of Botany, 2021, 56(6): 676-686. |
[15] | Ting Wang, Zengqiang Xia, Jiangping Shu, Jiao Zhang, Meina Wang, Jianbing Chen, Kanglin Wang, Jianying Xiang, Yuehong Yan. Dating whole-genome duplication reveals the evolutionary retardation of Angiopteris [J]. Biodiv Sci, 2021, 29(6): 722-734. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||