Chinese Bulletin of Botany ›› 2017, Vol. 52 ›› Issue (5): 598-607.DOI: 10.11983/CBB16191
• EXPERIMENTAL COMMUNICATIONS • Previous Articles Next Articles
Chengqiang Dang, Huimin Huang, Rong Dong, Miao Chen, Ting Gao, Jianping Tao*()
Received:
2016-09-25
Accepted:
2017-03-06
Online:
2017-09-01
Published:
2017-07-10
Contact:
Jianping Tao
Chengqiang Dang, Huimin Huang, Rong Dong, Miao Chen, Ting Gao, Jianping Tao. Spatial Distribution Pattern of Epilithic Moss Homomallium simlaense Patches in Rocky Desertification Habitats in Zhongliang Mountain, Chongqing, Southwest China[J]. Chinese Bulletin of Botany, 2017, 52(5): 598-607.
Item | Plots | ||
---|---|---|---|
Potential rocky desertification (A) | Slight rocky desertification (B) | Medium rocky desertification (C) | |
Elevation (m) | 552 | 564 | 585 |
Slope (°) | 26.3 | 22.1 | 31.5 |
Shade degree | 0.55 | 0.35 | 0.10 |
Aspect | South | Southeast | Northeast |
Geographical coordinates | 29°41′40″N 106°24′47″E | 29°41′53″N 106°24′30″E | 29°41′57″N 106°24′20″E |
Vegetation type | Broadleaved deciduous forest Shrub | Thick growth of grass Shrub | Thick growth of grass Shrub |
Table 1 Survey of three types of rocky desertification habitat
Item | Plots | ||
---|---|---|---|
Potential rocky desertification (A) | Slight rocky desertification (B) | Medium rocky desertification (C) | |
Elevation (m) | 552 | 564 | 585 |
Slope (°) | 26.3 | 22.1 | 31.5 |
Shade degree | 0.55 | 0.35 | 0.10 |
Aspect | South | Southeast | Northeast |
Geographical coordinates | 29°41′40″N 106°24′47″E | 29°41′53″N 106°24′30″E | 29°41′57″N 106°24′20″E |
Vegetation type | Broadleaved deciduous forest Shrub | Thick growth of grass Shrub | Thick growth of grass Shrub |
Figure 1 The quantitative relation of Homomallium simlaense patches in 3 types of rocky desertification habitat A: Potential rocky desertification; B: Slight rocky desertification; C: Medium rocky desertification
Figure 2 Scatterplot of spatial distributions of Homomallium simlaense patches in 3 types of rocky desertification habitat(A) Potential rocky desertification; (B) Slight rocky desertification; (C) Medium rocky desertification
Figure 3 Spatial distribution pattern of Homomallium simlaense patches in 3 types of rocky desertification habitat(A1)-(A3) Potential rocky desertification; (B1)-(B3) Slight rocky desertification; (C1), (C2) Medium rocky desertification
Figure 4 Spatial associations of different patches of Homomallium simlaense in 3 types of rocky desertification habitat(A1)-(A3) Potential rocky desertification; (B1)-(B3) Slight rocky desertification; (C1) Medium rocky desertification
Plots | Axis | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
Potential rocky desertification (A) | Eigenvalues | 0.515 | 0.329 | 0.123 | 0.028 | |
Cumulative percentage variance of species data | 51.5 | 84.4 | 96.6 | 99.4 | ||
Slight rocky desertification (B) | Eigenvalues | 0.527 | 0.398 | 0.057 | 0.016 | |
Cumulative percentage variance of species data | 52.7 | 92.5 | 98.2 | 99.8 | ||
Medium rocky desertification (C) | Eigenvalues | 0.461 | 0.385 | 0.141 | 0.011 | |
Cumulative percentage variance of species data | 46.1 | 84.7 | 98.7 | 99.8 |
Table 2 Statistical characteristics of the first 4 axes of the principal component analysis in 3 types of rocky desertification habitat
Plots | Axis | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
Potential rocky desertification (A) | Eigenvalues | 0.515 | 0.329 | 0.123 | 0.028 | |
Cumulative percentage variance of species data | 51.5 | 84.4 | 96.6 | 99.4 | ||
Slight rocky desertification (B) | Eigenvalues | 0.527 | 0.398 | 0.057 | 0.016 | |
Cumulative percentage variance of species data | 52.7 | 92.5 | 98.2 | 99.8 | ||
Medium rocky desertification (C) | Eigenvalues | 0.461 | 0.385 | 0.141 | 0.011 | |
Cumulative percentage variance of species data | 46.1 | 84.7 | 98.7 | 99.8 |
Figure 5 Different patches of Homomallium simlaense rela- tionship with environmental factors in 3 types of rocky desertification habitat(A) Potential rocky desertification; (B) Slight rocky desertification; (C) Medium rocky desertification. 1, 2, 3……No. of patches. SFS: Rock fracture; SJ: Microhabitat (stone facing, cliff, stony gully, stone pit, and grotto); PD: Gradient; YBD: Crown density; XDSD: Relative humidity
[1] | 高福元, 石福习 (2015). 基于不同零模型的三江平原沼泽湿地主要物种小尺度点格局分析. 生态学报 35, 2029-2037. |
[2] | 《广西西南喀斯特生物多样性》编委会 (2011). 广西西南喀斯特生物多样性. 北京: 中国大百科全书出版社. pp.106-108. |
[3] | 郭柯, 刘长成, 董鸣 (2011). 我国西南喀斯特植物生态适应性与石漠化治理. 植物生态学报 35, 991-999. |
[4] | 郭水良, 曹同 (2000). 长白山地区森林生态系统树附生苔藓植物群落分布格局研究. 植物生态学报 24, 442-450. |
[5] | 郭垚鑫, 胡有宁, 李刚, 王得祥, 杨吉健, 杨改河 (2014). 太白山红桦种群不同发育阶段的空间格局与关联性. 林业科学 50, 9-14. |
[6] | 郭屹立, 王斌, 向悟生, 丁涛, 陆树华, 黄俞淞, 黄甫昭, 李冬兴, 李先琨 (2015). 广西弄岗北热带喀斯特季节性雨林监测样地种群空间点格局分析. 生物多样性 23, 183-191. |
[7] | 韩文衡, 向悟生, 叶铎, 吕仕洪, 丁涛, 李先琨 (2010). 广西木论保护区喀斯特常绿落叶阔叶混交林优势种空间格局及其相关性. 应用生态学报 21, 2769-2776. |
[8] | 吉雪花, 张元明, 陶冶, 周小兵, 张静 (2013). 藓类结皮斑块面积与环境因子的关系. 中国沙漠 33, 1803-1809. |
[9] | 吉雪花, 张元明, 周小兵, 吴林, 张静 (2014). 不同尺度苔藓结皮土壤性状的空间分布特征. 生态学报 34, 4006-4016. |
[10] | 籍烨, 张朝晖 (2014). 喀斯特石漠生态系统不同自然演替阶段中苔藓植物多样性特征分析. 植物科学学报 32, 577-585. |
[11] | 姜俊, 赵秀海 (2011). 吉林蛟河针阔混交林群落优势种群种间联结性. 林业科学 47, 149-153. |
[12] | 李军峰, 贾少华, 王智慧, 张朝晖 (2015). 喀斯特石漠化过程中苔藓植物多样性及分布与环境关系. 生态科学 34, 68-73. |
[13] | 刘艳, 曹同, 王剑, 曹阳 (2008). 杭州市区土生苔藓植物分布与生态因子的关系. 应用生态学报 19, 775-781. |
[14] | 皮春燕, 刘艳 (2014). 重庆主城区住宅小区苔藓组成与多样性. 生物多样性 22, 583-588. |
[15] | 宋同清, 彭晚霞, 曾馥平, 王克林, 覃文更, 谭卫宁, 刘璐, 杜虎, 鹿士杨 (2010). 木论喀斯特峰丛洼地森林群落空间格局及环境解释. 植物生态学报 34, 298-308. |
[16] | 王琳, 张金屯 (2004). 历山山地草甸优势种的种间关联和相关分析. 西北植物学报 24, 1435-1440. |
[17] | 王晓雨, 于大炮, 周莉, 周旺明, 吴志军, 郭焱, 包也, 孟莹莹, 代力民 (2015). 长白山北坡林线岳桦种群空间分布格局. 生态学报 35, 116-124. |
[18] | 王鑫厅, 侯亚丽, 刘芳, 常英, 王炜, 梁存柱, 苗百岭 (2011). 羊草+大针茅草原退化群落优势种群空间点格局分析. 植物生态学报 35, 1281-1289. |
[19] | 熊康宁 (2002). 喀斯特石漠化的遥感——GIS典型研究: 以贵州省为例. 北京: 地质出版社. pp. 23-25. |
[20] | 徐晟翀, 曹同, 于晶, 陈怡, 宋国元 (2006). 上海市树附生苔藓植物分布格局研究. 西北植物学报 26, 1053-1058. |
[21] | 许强, 吕金枝, 苗艳明, 毕润成 (2016). 翅果油树群落主要物种空间分布格局及其关联性. 植物学报 51, 49-57. |
[22] | 杨洪晓, 张金屯, 吴波, 李晓松, 张友炎 (2006). 毛乌素沙地油蒿种群点格局分析. 植物生态学报 30, 563-570. |
[23] | 张金屯 (1998). 植物种群空间分布的点格局分析. 植物生态学报 22, 344-349. |
[24] | 张军以, 戴明宏, 王腊春, 苏维词, 曹立国 (2015). 西南喀斯特石漠化治理植物选择与生态适应性. 地球与环境 43, 269-278. |
[25] | 张明娟, 刘茂松, 徐驰, 池婷, 洪超 (2012). 不同密度条件下芨芨草空间格局对环境胁迫的响应. 生态学报 32, 595-604. |
[26] | 张天汉, 代玉, 王智慧, 张朝晖 (2014). 贵州关岭县喀斯特峰丛石漠区苔藓群落生态特征. 中国岩溶 33, 192-200. |
[27] | 张炜平, 潘莎, 贾昕, 储诚进, 肖洒, 林玥, 白燕远, 王根轩 (2013). 植物间正相互作用对种群动态和群落结构的影响: 基于个体模型的研究进展. 植物生态学报 37, 571-582. |
[28] | 张元明, 曹同, 潘伯荣 (2003). 新疆博格达山地面生苔藓植物物种多样性研究. 应用生态学报 14, 887-891. |
[29] | 张忠华, 胡刚, 倪健 (2015). 茂兰喀斯特常绿落叶阔叶混交林树种的空间分布格局及其分形特征. 生态学报 35, 8221-8230. |
[30] | Bai C, Yan M, BI R, He YH (2014). Spatial pattern analysis of dominant species in Exochorda giraldii community in Xingtang Temple of Taiyue Mountains, Shanxi, China.Chin J Plant Ecol 38, 1283-1295. |
[31] | Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Liancourt P, Tielböerger K, Travis JMJ, Anthelme F, Armas C, Coll L, Corcket E, Delzon S, Forey E, Kikvidze Z, Olofsson J, Pugnaire FI, Quiroz CL, Saccone P, Schiffers K, Seifan M, Touzard B, Michalet R (2008). Facilitation in plant comm- unities: the past, the present, and the future.J Ecol 96, 18-34. |
[32] | Callaway RM (2007). Positive Interactions and Interdependence in Plant Communities. Dordrecht: Springer. pp. 443-444. |
[33] | Callaway RM, Walker LR (1997). Competition and facilitation: a synthetic approach to interactions in plant communities.Ecology 78, 1958-1965. |
[34] | Condit R, Ashton PS, Baker P, Bunyavejchewin S, Gunatilleke S, Gunatilleke N, Hubbell SP, Foster RB, Itoh A, LaFrankie JV, Lee HS, Losos E, Manokaran N, Sukumar R, Yamakura T (2000). Spatial patterns in the distribution of tropical tree species.Science 288, 1414-1418. |
[35] | Glime JM (2006). Bryophyte Ecology. . |
[36] | Mägdefrau K (1982). Life-forms of Bryophytes. In: Smith AJE, ed. Bryophyte Ecology. Dordrecht: Springer. pp. 45-58. |
[37] | Nathan R (2006). Long-distance dispersal of plants.Science 313, 786-788. |
[38] | Rayburn AP, Schiffers K, Schupp EW (2011). Use of precise spatial data for describing spatial patterns and plant interactions in a diverse Great Basin shrub community.Plant Ecol 212, 585-594. |
[39] | Shen GC, He FL, Waagepetersen R, Sun IF, Hao ZQ, Chen ZS, Yu MJ (2013). Quantifying effects of habitat heterogeneity and other clustering processes on spatial distributions of tree species.Ecology 94, 2436-2443. |
[40] | Wiegand T, Moloney KA (2004). Rings, circles, and null- models for point pattern analysis in ecology.Oikos 104, 209-229. |
[1] | Yating Wang, Dinghai Zhang, Zhishan Zhang. Spatial distribution and interspecific correlation of Haloxylon persicum and H. ammodendron on fixed dunes of the Gurbantunggut Desert, China [J]. Biodiv Sci, 2022, 30(3): 21280-. |
[2] | Chongyang Wang, Lianjun Zhao, Shiyong Meng. Spatial distribution pattern and protection strategy for orchids in landslide mass of the Wanglang National Nature Reserve [J]. Biodiv Sci, 2022, 30(2): 21313-. |
[3] | Guang-Shuai CUI Tian-Xiang LUO Eryuan LIANG Lin Zhang. Advances in the study of shrub facilitation on herbs in arid and semi-arid regions [J]. Chin J Plant Ecol, 2022, 46(11): 1321-1333. |
[4] | Xiyang Hao, Cha He, Kelin Chu, Zhixin Shen, Qiang Zhao, Wei Gao, Da Pan, Hongying Sun. The distribution pattern and biodiversity conservation of freshwater crabs in Hainan Island [J]. Biodiv Sci, 2021, 29(5): 605-616. |
[5] | Dongdong Liang, Jie Peng, Gaili Gao, Xin Hong, Shoubiao Zhou, Jun Chu, Zhi Wang. Spatial distribution pattern and interspecific correlation analysis of main species of Rosaceae in a deciduous broad-leaved forest in Yaoluoping [J]. Biodiv Sci, 2020, 28(8): 1008-1017. |
[6] | Wang Xinting,Chai Jing,Jiang Chao,Tai Yang,Chi Yanyan,Zhang Weihua,Liu Fang,Li Suying. Population spatial pattern of Stipa grandis and its response to long-term overgrazing [J]. Biodiv Sci, 2020, 28(2): 128-134. |
[7] | Yuan Sun, Weigang Hu, Shuran Yao, Ying Sun, Jianming Deng. Geographic patterns and environmental determinants of angiosperm and terrestrial vertebrate species richness in the Yellow River basin [J]. Biodiv Sci, 2020, 28(12): 1523-1532. |
[8] | TA Feng, LIU Xian-De, LIU Run-Hong, ZHAO Wei-Jun, JING Wen-Mao, MA Jian, WU Xiu-Rong, ZHAO Jing-Zhong, MA Xue-E. Spatial distribution patterns and association of Picea crassifolia population in Dayekou Basin of Qilian Mountains, northwestern China [J]. Chin J Plant Ecol, 2020, 44(11): 1172-1183. |
[9] | TANG Li-Tao, LIU Dan, LUO Xue-Ping, HU Lei, WANG Chang-Ting. Forest soil phosphorus stocks and distribution patterns in Qinghai, China [J]. Chin J Plant Ecol, 2019, 43(12): 1091-1103. |
[10] | CHEN Yi-Chao, ZHAO Ying, SONG Xi-Qiang, REN Ming-Xun. Difference in spatial distribution patterns and population structures of Rhododendron hainanense between both sides of riparian bends [J]. Chin J Plant Ecol, 2018, 42(8): 841-849. |
[11] | Li-Shan SHAN, Ming SU, Zheng-Zhong ZHANG, Yang WANG, Shan WANG, Yi LI. Vertical distribution pattern of mixed root systems of desert plants Reaumuria soongarica and Salsola passerina under different environmental gradients [J]. Chin J Plant Ecol, 2018, 42(4): 475-486. |
[12] | Pu-Jin ZHANG, Hua QING, Lei ZHANG, Yan-Da XU, Lan MU, Ru-Han YE, Xiao QIU, Hong Chang, Hai-Hua SHEN, Jie YANG. Population structure and spatial pattern of Caragana tibetica communities in Nei Mongol shrub-encroached grassland [J]. Chin J Plant Ecol, 2017, 41(2): 165-174. |
[13] | Yan-Peng LI, Han XU, Yi-De LI, Tu-Shou LUO, De-Xiang CHEN, Zhang ZHOU, Ming-Xian LIN, Huai YANG. Scale-dependent spatial patterns of species diversity in the tropical montane rain forest in Jianfengling, Hainan Island, China [J]. Chin J Plant Ecol, 2016, 40(9): 861-870. |
[14] | Yi WU, Wen-Yao LIU, Liang SONG, Xi CHEN, Hua-Zheng LU, Su LI, Xian-Meng SHI. Advances in ecological studies of epiphytes using canopy cranes [J]. Chin J Plan Ecolo, 2016, 40(5): 508-522. |
[15] | MA Song-Mei, NIE Ying-Bin, GENG Qing-Long, WANG Rong-Xue. Impact of climate change on suitable distribution range and spatial pattern in Amygdalus mongolica [J]. Chin J Plant Ecol, 2014, 38(3): 262-269. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||