Chinese Bulletin of Botany ›› 2016, Vol. 51 ›› Issue (2): 226-234.DOI: 10.11983/CBB15055 cstr: 32102.14.CBB15055
• EXPERIMENTAL COMMUNICATIONS • Previous Articles Next Articles
Ying Liu1, Baozhang Chen1,2,*(), Jing Chen2, Guang Xu2,3
Received:
2015-03-31
Accepted:
2015-09-21
Online:
2016-03-01
Published:
2016-03-31
Contact:
E-mail: Ying Liu, Baozhang Chen, Jing Chen, Guang Xu. Applicability of Evapotranspiration Simulation Models for Forest Ecosystems in Qianyanzhou[J]. Chinese Bulletin of Botany, 2016, 51(2): 226-234.
Year | Screening interval (%) | ||||
---|---|---|---|---|---|
0.2-1.8 | 0.3-1.7 | 0.4-1.6 | 0.5-1.5 | 0.6-1.4 | |
2003 | 62.23 | 58.19 | 53.69 | 47.93 | 41.13 |
2004 | 64.88 | 60.73 | 55.70 | 49.72 | 42.61 |
2005 | 38.34 | 34.02 | 29.44 | 24.76 | 20.01 |
2006 | 51.16 | 45.75 | 40.35 | 34.44 | 28.12 |
2007 | 60.33 | 55.88 | 50.45 | 44.19 | 37.65 |
Table 1 Available quantity of data for 2003-2007 based on the principle of conservation energy
Year | Screening interval (%) | ||||
---|---|---|---|---|---|
0.2-1.8 | 0.3-1.7 | 0.4-1.6 | 0.5-1.5 | 0.6-1.4 | |
2003 | 62.23 | 58.19 | 53.69 | 47.93 | 41.13 |
2004 | 64.88 | 60.73 | 55.70 | 49.72 | 42.61 |
2005 | 38.34 | 34.02 | 29.44 | 24.76 | 20.01 |
2006 | 51.16 | 45.75 | 40.35 | 34.44 | 28.12 |
2007 | 60.33 | 55.88 | 50.45 | 44.19 | 37.65 |
Month | Models | |||||||
---|---|---|---|---|---|---|---|---|
P-T | B-C | H-S | J-H | Ham | Tu | Ma | Th | |
1 | 1.213 | 0.353 | 0.003 | 2.151 | 0.078 | 0.022 | 0.550 | 8.113 |
2 | 0.991 | 0.350 | 0.003 | 1.225 | 0.068 | 0.019 | 0.520 | 8.113 |
3 | 0.888 | 0.381 | 0.003 | 0.998 | 0.070 | 0.018 | 0.482 | 8.113 |
4 | 0.790 | 0.415 | 0.003 | 0.901 | 0.070 | 0.020 | 0.546 | 8.113 |
5 | 0.863 | 0.499 | 0.003 | 0.931 | 0.077 | 0.024 | 0.668 | 8.113 |
6 | 0.872 | 0.526 | 0.003 | 0.914 | 0.076 | 0.026 | 0.707 | 8.113 |
7 | 0.932 | 0.606 | 0.004 | 0.995 | 0.080 | 0.031 | 0.862 | 0.940 |
8 | 0.883 | 0.561 | 0.004 | 0.993 | 0.077 | 0.029 | 0.816 | 0.940 |
9 | 0.886 | 0.526 | 0.004 | 1.073 | 0.080 | 0.025 | 0.722 | 8.113 |
10 | 0.929 | 0.407 | 0.003 | 1.072 | 0.068 | 0.021 | 0.625 | 8.113 |
11 | 1.072 | 0.357 | 0.003 | 1.248 | 0.065 | 0.020 | 0.604 | 8.113 |
12 | 1.204 | 0.357 | 0.003 | 2.069 | 0.076 | 0.020 | 0.561 | 8.113 |
Sd | 0.1353 | 0.0928 | 0.0004 | 0.4329 | 0.0051 | 0.0042 | 0.1192 | 2.792 |
Mean | 0.9602 | 0.4448 | 0.0031 | 1.2142 | 0.0737 | 0.0230 | 0.6385 | 6.917 |
CV (%) | 14.089 | 20.874 | 13.547 | 35.653 | 6.948 | 18.254 | 18.671 | 40.363 |
Table 2 Model parameter (α), standard deviation (Sd), mean and coefficient variation (CV) using the least square method
Month | Models | |||||||
---|---|---|---|---|---|---|---|---|
P-T | B-C | H-S | J-H | Ham | Tu | Ma | Th | |
1 | 1.213 | 0.353 | 0.003 | 2.151 | 0.078 | 0.022 | 0.550 | 8.113 |
2 | 0.991 | 0.350 | 0.003 | 1.225 | 0.068 | 0.019 | 0.520 | 8.113 |
3 | 0.888 | 0.381 | 0.003 | 0.998 | 0.070 | 0.018 | 0.482 | 8.113 |
4 | 0.790 | 0.415 | 0.003 | 0.901 | 0.070 | 0.020 | 0.546 | 8.113 |
5 | 0.863 | 0.499 | 0.003 | 0.931 | 0.077 | 0.024 | 0.668 | 8.113 |
6 | 0.872 | 0.526 | 0.003 | 0.914 | 0.076 | 0.026 | 0.707 | 8.113 |
7 | 0.932 | 0.606 | 0.004 | 0.995 | 0.080 | 0.031 | 0.862 | 0.940 |
8 | 0.883 | 0.561 | 0.004 | 0.993 | 0.077 | 0.029 | 0.816 | 0.940 |
9 | 0.886 | 0.526 | 0.004 | 1.073 | 0.080 | 0.025 | 0.722 | 8.113 |
10 | 0.929 | 0.407 | 0.003 | 1.072 | 0.068 | 0.021 | 0.625 | 8.113 |
11 | 1.072 | 0.357 | 0.003 | 1.248 | 0.065 | 0.020 | 0.604 | 8.113 |
12 | 1.204 | 0.357 | 0.003 | 2.069 | 0.076 | 0.020 | 0.561 | 8.113 |
Sd | 0.1353 | 0.0928 | 0.0004 | 0.4329 | 0.0051 | 0.0042 | 0.1192 | 2.792 |
Mean | 0.9602 | 0.4448 | 0.0031 | 1.2142 | 0.0737 | 0.0230 | 0.6385 | 6.917 |
CV (%) | 14.089 | 20.874 | 13.547 | 35.653 | 6.948 | 18.254 | 18.671 | 40.363 |
Figure 1 Daily evapotrans piration (ET) observation and ET simulation on average of years (A)-(G) The fitting prctures of P-T, B-C, H-S, J-H, Ham, Tu and Ma model, respectively. Abscissa represents observation; Ordinate represents simulation; R2 represents goodness of fit.
Model | RMSE | MBE | R |
---|---|---|---|
P-T | 0.456 | 0.355 | 0.953** |
B-C | 0.458 | 0.342 | 0.917** |
H-S | 0.453 | 0.343 | 0.927** |
J-H | 0.512 | 0.399 | 0.911** |
Ham | 0.439 | 0.332 | 0.925** |
Tu | 0.476 | 0.362 | 0.910** |
Ma | 0.467 | 0.348 | 0.913** |
Table 3 Correlation analysis of daily evapotranspiration (ET) observation and ET simulation on average
Model | RMSE | MBE | R |
---|---|---|---|
P-T | 0.456 | 0.355 | 0.953** |
B-C | 0.458 | 0.342 | 0.917** |
H-S | 0.453 | 0.343 | 0.927** |
J-H | 0.512 | 0.399 | 0.911** |
Ham | 0.439 | 0.332 | 0.925** |
Tu | 0.476 | 0.362 | 0.910** |
Ma | 0.467 | 0.348 | 0.913** |
Coefficient | Obs | Model | |||||||
---|---|---|---|---|---|---|---|---|---|
P-T | B-C | H-S | J-H | Ham | Tu | Ma | Th | ||
Sd | 33.337 | 34.987 | 33.174 | 34.383 | 36.171 | 33.158 | 33.962 | 33.165 | 48.385 |
Mean | 68.045 | 65.514 | 66.629 | 64.011 | 63.319 | 65.891 | 66.078 | 66.701 | 64.885 |
CV (%) | 48.992 | 57.858 | 49.790 | 53.714 | 57.125 | 50.322 | 51.397 | 49.722 | 74.570 |
Table 4 Monthly change of evapotranspiration (ET) observation and ET simulation of years (mm·m-1)
Coefficient | Obs | Model | |||||||
---|---|---|---|---|---|---|---|---|---|
P-T | B-C | H-S | J-H | Ham | Tu | Ma | Th | ||
Sd | 33.337 | 34.987 | 33.174 | 34.383 | 36.171 | 33.158 | 33.962 | 33.165 | 48.385 |
Mean | 68.045 | 65.514 | 66.629 | 64.011 | 63.319 | 65.891 | 66.078 | 66.701 | 64.885 |
CV (%) | 48.992 | 57.858 | 49.790 | 53.714 | 57.125 | 50.322 | 51.397 | 49.722 | 74.570 |
Figure 2 Comparison of monthly evapotranspiration (ET) observation and ET simulation of years on average (A) The picture of monthly variation between observation and P-T model simulation; (B) The picture of monthly variation between observation and B-C model simulation; (C) The picture of monthly variation between observation and H-S model simulation; (D) The picture of monthly variation between observation and J-H model simulation; (E) The picture of monthly variation between observation and Ham model simulation; (F) The picture of monthly variation between observation and Tu model simulation; (G) The picture of monthly variation between observation and Ma model simulation; (H) The picture of monthly variation between observation and Th model simulation
Model | RMSE | MBE | R |
---|---|---|---|
P-T | 6.337 | 5.621 | 0.994** |
B-C | 3.752 | 3.179 | 0.994** |
H-S | 6.198 | 5.685 | 0.990** |
J-H | 7.203 | 6.306 | 0.990** |
Ham | 4.468 | 3.881 | 0.992** |
Tu | 3.931 | 3.632 | 0.995** |
Ma | 3.495 | 2.999 | 0.995** |
Th | 15.559 | 13.436 | 0.992** |
Table 5 Monthly evapotranspiration (ET) observation and ET simulation on average of years
Model | RMSE | MBE | R |
---|---|---|---|
P-T | 6.337 | 5.621 | 0.994** |
B-C | 3.752 | 3.179 | 0.994** |
H-S | 6.198 | 5.685 | 0.990** |
J-H | 7.203 | 6.306 | 0.990** |
Ham | 4.468 | 3.881 | 0.992** |
Tu | 3.931 | 3.632 | 0.995** |
Ma | 3.495 | 2.999 | 0.995** |
Th | 15.559 | 13.436 | 0.992** |
Rn | Ts | Ta | RH | Ws | Pvapor | Rainfall | n | |
---|---|---|---|---|---|---|---|---|
R | 0.951** | 0.877** | 0.900** | -0.326** | 0.371** | 0.891** | 0.061 | 0.799** |
Table 6 Correlation coefficient (R) of meteorological factor and evapotranspiration (ET) observation under Person correlation test
Rn | Ts | Ta | RH | Ws | Pvapor | Rainfall | n | |
---|---|---|---|---|---|---|---|---|
R | 0.951** | 0.877** | 0.900** | -0.326** | 0.371** | 0.891** | 0.061 | 0.799** |
Rn | Ts | Ta | RH | Ws | Pvapor | n | |
---|---|---|---|---|---|---|---|
R | 0.733** | 0.300** | -0.412** | -0.206** | 0.308** | 0.334** | -0.24 |
Table 7 Correlation coefficient of meteorological factor and evapotranspiration (ET) observation under partial correlation analysis
Rn | Ts | Ta | RH | Ws | Pvapor | n | |
---|---|---|---|---|---|---|---|
R | 0.733** | 0.300** | -0.412** | -0.206** | 0.308** | 0.334** | -0.24 |
[1] | 程根伟, 余新晓, 赵玉涛, 周杨明, 罗辑 (2003). 贡嘎山亚高山森林带蒸散特征模拟研究. 北京林业大学学报 25(1), 23-27. |
[2] | 杜加强, 熊珊珊, 刘成程, 郭杨, 舒俭民, 张林波 (2013). 黄河上游地区几种参考作物蒸散量计算方法的适用性比较. 干旱区地理 36, 831-840. |
[3] | 胡兴波, 芦新建, 董梅, 连利叶, 贺康宁 (2013). 简化参照作物蒸散量(ET0)计算公式在青海省高寒区的适用性分析. 西北农林科技大学学报(自然科学版) 41(11),201-208. |
[4] | 李菲菲, 饶良懿, 吕琨珑, 李会杰, 宋丹丹 (2012). Priestley- Taylor模型参数修正及在蒸散发估算中的应用. 浙江农林大学学报 30, 748-754. |
[5] | 李玉霖, 崔建垣, 张铜会 (2002). 参考作物蒸散量计算方法的比较研究. 中国沙漠 22, 372-376. |
[6] | 王昊, 许士国, 孙砳石 (2007). 扎龙湿地参照作物蒸散发估算的经验模型. 水科学进展 18, 246-251. |
[7] | 王梅, 王建波 (2005). 森林内气象因素和蒸散发的观测实验. 黑龙江水专学报 32(2), 21-22, 25. |
[8] |
杨贵军, 黄文江, 王纪华, 邢著荣 (2010). 多源多角度遥感数据反演森林叶面积指数方法. 植物学报 45, 566-578.
DOI |
[9] | 张晓琳, 熊立华, 林琳, 龙海峰 (2012). 五种潜在蒸散发公式在汉江流域的应用. 干旱区地理 35, 229-237. |
[10] | Allen RG, Pereira LS, Dirk R, Martin S (1998). Crop Evapotranspiration:Guidelines for Computing Crop Water Requirements. Rome: Natural Resources Management and Environment Press. pp. 56. |
[11] | Blaney HF, Criddle WD (1962). Determining consumptive use and irrigation water requirements. Technical Bull 25, 369-373. |
[12] | Bonan GB (2008). Ecological Climatology:Concepts and Applications. Cambridge: Cambridge University Press. pp. 31. |
[13] | Chen B, Ge Q, Fu D, Yu G, Sun X, Wang S, Wang H (2010). A data-model fusion approach for upscaling gross ecosystem productivity to the landscape scale based on remote sensing and flux footprint modelling. Biogeo- sciences 7, 2943-2958. |
[14] | Chen J, Chen BZ, Black TA, Innes JL, Wang GY, Kiely G, Hirano T, Wohlfahrt G (2013). Comparison of terres- trial evapotranspiration estimates using the mass transfer and Penman-Monteith equations in land surface models. J Geophys Res 118, 1715-1731. |
[15] | Douglas E, Jennifer MJ, Summer DS, Ram LR (2009). A comparison of models for estimating potential evapo- transpiration for Florida land cover types. J Hydrol 373, 366-376. |
[16] | Fisher JB, Whittaker RJ, Malhi Y (2011). ET come home: potential evapotranspiration in geographical ecology. Global Ecol Biogeogr 20, 1-18. |
[17] | Hargreaves GH, Samani ZA (1985). Reference crop evapo- transpiration from temperature. Appl Eng Agric 1, 96-99. |
[18] | Lu JB, Sun G, Mcnulty SG, Amatya DM (2005). A com- parison of six potential evapotranspiration methods for regional use in the southeastern US. J Am Water Works Assn 41, 621-633. |
[19] | Loukas A, Vasiliades L, Domenikiotis C, Dalezios NR (2005). Basin-wide actual evapotranspiration estimation using NOAA/AVHRR satellite data. Phys Chem Earth 30, 69-79. |
[20] | Pereira AR, Pruitt WO (2004). Adaptation of the Thorn- thwaite scheme for estimating daily reference evapora- tion. Agr Water Manage 66, 251-257. |
[21] | Priestly CHB, Taylor RJ (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100(2), 81-92. |
[22] | Trajkovic S, Kolakovic S (2009). Evaluation of reference evapotranspiration equations under humid conditions. Water Resour Manag 23, 3057-3067. |
[23] | Xu CY, Singh VP (2005). Evaluation of three compl- ementary relationship evapotranspiration models by water balance approach to estimate actual regional evapo- transpiration in different climatic regions. J Hydrol 308, 105-121. |
[24] | Zha TS, Barr AG, van der Kamp G, Black TA, McCaughey JH, Flanagan LB (2010). Interannual variation of evapo- transpiration from forest and grassland ecosystems in western Canada in relation to drought. Agric For Meteorol 150, 1476-1484. |
[1] | ZHAO Meng-Yang, ZHUANG Hao-Ran, XU De-Hao, MA Guo-Rong, MA Yong-Cheng, FENG Ke-Peng. Hydrogen and oxygen stable isotope characteristics of maize fields in arid and semi-arid oasis irrigation areas with SPAC system: variability traits and influencing factors [J]. Chin J Plant Ecol, 2025, 49(2): 256-267. |
[2] | Xinyi He, Yumei Pan, Yan Zhu, Jiayi Chen, Sirong Zhang, Naili Zhang. Impact of ectomycorrhizal tree dominance and species richness on soil nitrogen turnover in a warm temperate forest [J]. Biodiv Sci, 2024, 32(9): 24173-. |
[3] | WANG Yin, TONG Xiao-Juan, ZHANG Jin-Song, LI Jun, MENG Ping, LIU Pei-Rong, ZHANG Jing-Ru. Impact of drought on carbon and water fluxes and their coupling in a Quercus variabilis plantation [J]. Chin J Plant Ecol, 2024, 48(9): 1157-1171. |
[4] | HUANG Li-Cheng, MO Xing-Guo. Response and resilience of net primary productivity of the Hai River Basin ecosystems under meteorological droughts [J]. Chin J Plant Ecol, 2024, 48(10): 1256-1273. |
[5] | HAN Cong, MU Yan-Mei, ZHA Tian-Shan, QIN Shu-Gao, LIU Peng, TIAN Yun, JIA Xin. A dataset of ecosystem fluxes in a shrubland ecosystem of Mau Us Sandy Land in Yanchi, Ningxia, China (2012-2016) [J]. Chin J Plant Ecol, 2023, 47(9): 1322-1332. |
[6] | WANG Xiu-Ying, CHEN Qi, DU Hua-Li, ZHANG Rui, MA Hong-Lu. Evapotranspiration interpolation in alpine marshes wetland on the Qingzang Plateau based on machine learning [J]. Chin J Plant Ecol, 2023, 47(7): 912-921. |
[7] | ZHANG Zhong-Yang, SONG Xi-Qiang, REN Ming-Xun, ZHANG Zhe. Ecological functions of vascular epiphytes in habitat construction [J]. Chin J Plant Ecol, 2023, 47(7): 895-911. |
[8] | ZHANG Yao, CHEN Lan, WANG Jie-Ying, LI Yi, WANG Jun, GUO Yao-Xin, REN Cheng-Jie, BAI Hong-Ying, SUN Hao-Tian, ZHAO Fa-Zhu. Differences and influencing factors of microbial carbon use efficiency in forest rhizosphere soils at different altitudes in Taibai Mountain, China [J]. Chin J Plant Ecol, 2023, 47(2): 275-288. |
[9] | ZHU Yu-Ying, ZHANG Hua-Min, DING Ming-Jun, YU Zi-Ping. Changes of vegetation greenness and its response to drought-wet variation on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(1): 51-64. |
[10] | FENG Yin-Cheng, WANG Yun-Qi, WANG Yu-Jie, WANG Kai, WANG Song-Nian, WANG Jie-Shuai. Water vapor fluxes and their relationship with environmental factors in a conifer-broadleaf mixed forest ecosystem in Jinyun Mountain, Chongqing, China [J]. Chin J Plant Ecol, 2022, 46(8): 890-903. |
[11] | HUANG Ying, CHEN Zhi, SHI Zhe, XIONG Bo-Wen, YAN Chun-Hua, QIU Guo-Yu. Temporal and spatial variation characteristics and different calculation methods for the key parameter αe in the generalized complementary principle of evapotranspiration [J]. Chin J Plant Ecol, 2022, 46(3): 300-310. |
[12] | LI Hong-Qin, ZHANG Ya-Ru, ZHANG Fa-Wei, MA Wen-Jing, LUO Fang-Lin, WANG Chun-Yu, YANG Yong-Sheng, ZHANG Lei-Ming, LI Ying-Nian. Application of boosted regression trees for the gap-filling to flux dataset in an alpine scrubland of Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(12): 1437-1447. |
[13] | WANG Li-Shuang, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, LIU Pei-Rong, LI Jun, ZHANG Jing-Ru, ZHOU Yu. Energy flux and evapotranspiration of two typical plantations in semi-arid area of western Liaoning, China [J]. Chin J Plant Ecol, 2022, 46(12): 1508-1522. |
[14] | WANG Yan-Bing, YOU Cui-Hai, TAN Xing-Ru, CHEN Bo-Yu, XU Meng-Zhen, CHEN Shi-Ping. Seasonal and interannual variations in energy balance closure over arid and semi-arid grasslands in northern China [J]. Chin J Plant Ecol, 2022, 46(12): 1448-1460. |
[15] | WANG Jia-Tong, NIU Chun-Yue, HU Tian-Yu, LI Wen-Kai, LIU Ling-Li, GUO Qing-Hua, SU Yan-Jun. Three-dimensional radiative transfer modeling of forest: recent progress, applications, and future opportunities [J]. Chin J Plant Ecol, 2022, 46(10): 1200-1218. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||