Chinese Bulletin of Botany ›› 2016, Vol. 51 ›› Issue (1): 120-129.DOI: 10.11983/CBB14222
Previous Articles Next Articles
Xi Zhang, Jinxing Lin, Xiaoyi Shan*
Received:
2014-12-30
Accepted:
2015-05-11
Online:
2016-01-01
Published:
2016-02-01
Contact:
Shan Xiaoyi
About author:
? These authors contributed equally to this paper
Xi Zhang, Jinxing Lin, Xiaoyi Shan. Progress in Inorganic Nitrogen Transport Proteins and Their Phosphorylation Regulatory Mechanism in Arabidopsis[J]. Chinese Bulletin of Botany, 2016, 51(1): 120-129.
基因名称 | 主要组织定位 | 功能 | 参考文献 |
---|---|---|---|
NRT1.1 | 根表皮、皮层和内皮层细胞、 叶片保卫细胞 | 双亲和性硝酸根转运和信号感受 | Wang et al., 2012 |
NRT1.2 | 根表皮细胞 | 低亲和性硝酸根转运 | Wang et al., 2012 |
NRT1.4 | 叶柄 | 调节硝酸根在叶柄和叶片间的分配 | Wang et al., 2012 |
NRT1.6 | 珠柄 | 种子发育时的硝酸根供应 | Wang et al., 2012 |
NRT1.7 | 老叶小叶脉的韧皮部细胞 | 由老叶到幼叶的硝酸根再分配 | Wang et al., 2012 |
NRT1.8 | 根木质部薄壁细胞 | 调节硝酸根从根部到茎部的转运 | Wang et al., 2012 |
NRT1.9 | 根韧皮部伴胞 | 调节硝酸根从根部到茎部的转运 | Wang et al., 2012 |
NRT1.11/NRT1.12 | 成熟叶片主叶脉伴胞 | 由成熟叶片到幼叶的硝酸根再分配 | Hsu and Tsay, 2013 |
NAXT1 | 根皮层细胞 | 硝酸根的外流 | Wang et al., 2012 |
NRT2.1 | 根表皮和皮层细胞 | 高亲和性硝酸根转运 | Wang et al., 2012 |
NRT2.2 | 根部 | 高亲和性硝酸根转运 | Wang et al., 2012 |
NRT2.4 | 根表皮细胞 | 高亲和性硝酸根转运 | Wang et al., 2012 |
NRT2.7 | 成熟种子 | 通过转运将硝酸根储存在液泡中 | Wang et al., 2012 |
CLCa/b | 叶肉细胞 | 通过转运将硝酸根储存在液泡中 | Wang et al., 2012 |
SLAC1/SLAH3 | 保卫细胞 | 硝酸根的外流 | Wang et al., 2012 |
AMT1;1 | 根表皮细胞和皮层细胞 | 铵根离子吸收 | Loqué and von Wirén, 2004 |
AMT1;2 | 根皮层和内皮层细胞 | 通过质外体向维管束转运铵根离子 | Loqué and von Wirén, 2004 |
AMT1;3 | 根表皮细胞和皮层细胞 | 铵根离子吸收 | Loqué and von Wirén, 2004 |
AMT1;4 | 花粉 | 花粉中特异转运铵根离子 | Loqué and von Wirén, 2004 |
Table 1 The location and physiological function of primary nitrogen transporters in Arabidopsis thaliana
基因名称 | 主要组织定位 | 功能 | 参考文献 |
---|---|---|---|
NRT1.1 | 根表皮、皮层和内皮层细胞、 叶片保卫细胞 | 双亲和性硝酸根转运和信号感受 | Wang et al., 2012 |
NRT1.2 | 根表皮细胞 | 低亲和性硝酸根转运 | Wang et al., 2012 |
NRT1.4 | 叶柄 | 调节硝酸根在叶柄和叶片间的分配 | Wang et al., 2012 |
NRT1.6 | 珠柄 | 种子发育时的硝酸根供应 | Wang et al., 2012 |
NRT1.7 | 老叶小叶脉的韧皮部细胞 | 由老叶到幼叶的硝酸根再分配 | Wang et al., 2012 |
NRT1.8 | 根木质部薄壁细胞 | 调节硝酸根从根部到茎部的转运 | Wang et al., 2012 |
NRT1.9 | 根韧皮部伴胞 | 调节硝酸根从根部到茎部的转运 | Wang et al., 2012 |
NRT1.11/NRT1.12 | 成熟叶片主叶脉伴胞 | 由成熟叶片到幼叶的硝酸根再分配 | Hsu and Tsay, 2013 |
NAXT1 | 根皮层细胞 | 硝酸根的外流 | Wang et al., 2012 |
NRT2.1 | 根表皮和皮层细胞 | 高亲和性硝酸根转运 | Wang et al., 2012 |
NRT2.2 | 根部 | 高亲和性硝酸根转运 | Wang et al., 2012 |
NRT2.4 | 根表皮细胞 | 高亲和性硝酸根转运 | Wang et al., 2012 |
NRT2.7 | 成熟种子 | 通过转运将硝酸根储存在液泡中 | Wang et al., 2012 |
CLCa/b | 叶肉细胞 | 通过转运将硝酸根储存在液泡中 | Wang et al., 2012 |
SLAC1/SLAH3 | 保卫细胞 | 硝酸根的外流 | Wang et al., 2012 |
AMT1;1 | 根表皮细胞和皮层细胞 | 铵根离子吸收 | Loqué and von Wirén, 2004 |
AMT1;2 | 根皮层和内皮层细胞 | 通过质外体向维管束转运铵根离子 | Loqué and von Wirén, 2004 |
AMT1;3 | 根表皮细胞和皮层细胞 | 铵根离子吸收 | Loqué and von Wirén, 2004 |
AMT1;4 | 花粉 | 花粉中特异转运铵根离子 | Loqué and von Wirén, 2004 |
Figure 3 AMT1;1/1;2 phosphorylation regulatory mechanism (modified from Lanquar et al., 2009)(A) Low nitrate concentration; (B) High nitrate concentration
1 | Barbier-Brygoo H, De Angeli A, Filleur S, Frachisse JM, Gambale F, Thomine S, Wege S (2011). Anion channels/transporters in plants: from molecular bases to regulatory networks.Annu Rev Plant Biol 62, 25-51. |
2 | Brandt B, Brodsky DE, Xue S, Negi J, Iba K, Kangasjärvi J, Ghassemian M, Stephan AB, Hu H, Schroeder JI (2012). Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action.Proc Natl Acad Sci USA 109, 10593-10598. |
3 | Chadwick DR, John F, Pain BF, Chambers BJ, Williams J (2000). Plant uptake of nitrogen from the organic nitrogen fraction of animal manures: a laboratory experiment.J Agric Sci 134, 159-168. |
4 | Crawford NM (1995). Nitrate: nutrient and signal for plant growth.Plant Cell 7, 859-868. |
5 | Evans JR (1989). Photosynthesis and nitrogen relationships in leaves of C3 plants.Oecologia 78, 9-19. |
6 | Filleur S, Dorbe M, Cerezo M, Orsel M, Granier F, Gojon A, Daniel-Vedele F (2001). An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake.FEBS Lett 489, 220-224. |
7 | Forde BG (2000). Nitrate transporters in plants: structure, function and regulation.Bba-Biomembranes 1465, 219-235. |
8 | Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Frommer WB, von Wirén N (1999). Three functional transporters for constitutive, diurnally regulated, and starvation indu- ced uptake of ammonium into Arabidopsis roots.Plant Cell 11, 937-947. |
9 | Geiger D, Maierhofer T, Al-Rasheid KA, Scherzer S, Mumm P, Liese A, Ache P, Wellmann C, Marten I, Grill E (2011). Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1.Sci Signal 4, a32. |
10 | Geiger D, Scherzer S, Mumm P, Marten I, Ache P, Matschi S, Liese A, Wellmann C, Al-Rasheid K, Grill E (2010). Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities.Proc Natl Acad Sci USA 107, 8023-8028. |
11 | Glass AD, Britto DT, Kaiser BN, Kinghorn JR, Kron- zucker HJ, Kumar A, Okamoto M, Rawat S, Siddiqi MY, Unkles SE (2002). The regulation of nitrate and ammonium transport systems in plants.J Exp Bot 53, 855-864. |
12 | Glass AD, Shaff JE, Kochian LV (1992). Studies of the uptake of nitrate in barley IV. Electrophysiology.Plant Physiol 99, 456-463. |
13 | Ho CH, Lin SH, Hu HC, Tsay YF (2009). CHL1 functions as a nitrate sensor in plants.Cell 138, 1184-1194. |
14 | Hsu PK, Tsay YF (2013). Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem-borne nitrate to enhance plant growth.Plant Phy- siol 163, 844-856. |
15 | Huang NC, Liu KH, Lo HJ, Tsay YF (1999). Cloning and functional characterization of an Arabidopsis nitrate trans- porter gene that encodes a constitutive component of low- affinity uptake.Plant Cell 11, 1381-1392. |
16 | Javelle A, Morel M, Rodríguez Pastrana BR, Botton B, André B, Marini AM, Brun A, Chalot M (2003). Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum.Mol Microbiol 47, 411-430. |
17 | Jentsch TJ (2008). CLC chloride channels and transporters, from genes to protein structure, pathology and physiology.Crit Rev Biochem Mol 43, 3-36. |
18 | Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002). Molecular structure and physiological function of chloride channels.Physiol Rev 82, 503-568. |
19 | Kiba T, Feria-Bourrellier A, Lafouge F, Lezhneva L, Boutet-Mercey S, Orsel M, Bréhaut V, Miller A, Daniel-Vedele F, Sakakibara H (2012). The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants.Plant Cell 24, 245-258. |
20 | Krapp A, David LC, Chardin C, Girin T, Marmagne A, Leprince A, Chaillou S, Ferrario-Méry S, Meyer C, Daniel-Vedele F (2014). Nitrate transport and signaling in Arabidopsis.J Exp Bot 65, 789-798. |
21 | Lanquar V, Loqué D, Hörmann F, Yuan L, Bohner A, Engelsberger WR, Lalonde S, Schulze WX, von Wirén N, Frommer WB (2009). Feedback inhibition of ammonium uptake by a phospho-dependent allosteric mechanism in Arabidopsis.Plant Cell 21, 3610-3622. |
22 | Lawlor DW, Lemaire G, Gastal F (2001) Nitrogen, Plant Growth and Crop Yield. Berlin: Springer. pp. 343-367. |
23 | Lea PJ, Azevedo RA (2006). Nitrogen use efficiency. 1. Up- take of nitrogen from the soil.Ann Appl Biol 149, 243-247. |
24 | Lee SC, Lan W, Buchanan BB, Luan S (2009). A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells.Proc Natl Acad Sci USA 106, 21419-21424. |
25 | Léran S, Muños S, Brachet C, Tillard P, Gojon A, Lacombe B (2013). Arabidopsis NRT1.1 is a bidirectional transporter involved in root-to-shoot nitrate translocation.Mol Plant 6, 1984-1987. |
26 | Li JY, Fu YL, Pike SM, Bao J, Tian W, Zhang Y, Chen CZ, Zhang Y, Li HM, Huang J (2010). The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance.Plant Cell 22, 1633-1646. |
27 | Li W, Wang Y, Okamoto M, Crawford NM, Siddiqi MY, Glass AD (2007). Dissection of the AtNRT2.1: AtNRT2.2 inducible high-affinity nitrate transporter gene cluster.Plant Physiol 143, 425-433. |
28 | Lin SH, Kuo HF, Canivenc G, Lin CS, Lepetit M, Hsu PK, Tillard P, Lin HL, Wang YY, Tsai CB (2008). Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport.Plant Cell 20, 2514-2528. |
29 | Liu KH, Huang CY, Tsay YF (1999). CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake.Plant Cell 11, 865-874. |
30 | Liu KH, Tsay YF (2003). Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation.EMBO J 22, 1005-1013. |
31 | Loqué D, Lalonde S, Looger LL, Von Wirén N, Frommer WB (2007). A cytosolic trans-activation domain essential for ammonium uptake.Nature 446, 195-198. |
32 | Loqué D, von Wirén N (2004). Regulatory levels for the transport of ammonium in plant roots.J Exp Bot 55, 1293-1305. |
33 | Loqué D, Yuan L, Kojima S, Gojon A, Wirth J, Gazzarrini S, Ishiyama K, Takahashi H, Von Wirén N (2006). Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots.Plant J 48, 522-534. |
34 | Mayer M, Ludewig U (2006). Role of AMT1;1 in NH4+ acquisition in Arabidopsis thaliana.Plant Biol 8, 522-528. |
35 | Mei HS, Thimann KV (1984). The relation between nitrogen deficiency and leaf senescence.Physiol Plant 62, 157-161. |
36 | Miflin BJ, Lea PJ (1976). The pathway of nitrogen assimilation in plants.Phytochemistry 15, 873-885. |
37 | Nacry P, Bouguyon E, Gojon A (2013). Nitrogen Acquisition by Roots: Physiological and Developmental Mechanisms Ensuring Plant Adaptation to a Fluctuating Resource. Berlin: Springer. pp. 1-29. |
38 | Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998). Boreal forest plants take up organic nitrogen.Nature 392, 914-916. |
39 | Neuhäuser B, Dynowski M, Mayer M, Ludewig U (2007). Regulation of NH4+ transport by essential cross talk bet- ween AMT monomers through the carboxyl tails.Plant Physiol 143, 1651-1659. |
40 | Okamoto M, Kumar A, Li W, Wang Y, Siddiqi MY, Crawford NM, Glass AD (2006). High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1.Plant Physiol 140, 1036-1046. |
41 | Parker JL, Newstead S (2014). Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1.Nature 507, 68-72. |
42 | Robertson GP, Vitousek PM (2009). Nitrogen in agriculture: balancing the cost of an essential resource.Annu Rev Environ Resour 34, 97-125. |
43 | Robertson JL, Kolmakova-Partensky L, Miller C (2010). Design, function and structure of a monomeric ClC trans- porter.Nature 468, 844-847. |
44 | Segonzac C, Boyer JC, Ipotesi E, Szponarski W, Tillard P, Touraine B, Sommerer N, Rossignol M, Gibrat R (2007). Nitrate efflux at the root plasma membrane: identification of an Arabidopsis excretion transporter.Plant Cell 19, 3760-3777. |
45 | Sekhon GS (1995). Fertilizer-N use efficiency and nitrate pollution of groundwater in developing countries.J Contam Hydrol 20, 167-184. |
46 | Sun J, Bankston JR, Payandeh J, Hinds TR, Zagotta WN, Zheng N (2014). Crystal structure of the plant dual-affinity nitrate transporter NRT1.1.Nature 507, 73-77 |
47 | Tsay YF (2014). Plant science: how to switch affinity.Nature 507, 44-45. |
48 | Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007). Nitrate transporters and peptide transporters.FEBS Lett 581, 2290-2300. |
49 | Tsay YF, Schroeder JI, Feldmann KA, Crawford NM (1993). The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter.Cell 72, 705-713. |
50 | Vert G, Chory J (2009). A toggle switch in plant nitrate uptake.Cell 138, 1064-1066. |
51 | von der Fecht-Bartenbach J, Bogner M, Dynowski M, Ludewig U (2010). CLCb-mediated NO3-/H+ exchange across the tonoplast of Arabidopsis vacuoles.Plant Cell Physiol 51, 960-968. |
52 | von Wirén N, Merrick M (2004). Regulation and Function of Ammonium Carriers in Bacteria, Fungi, and Plants. Berlin: Springer. pp. 95-120. |
53 | von Wittgenstein NJ, Le CH, Hawkins BJ, Ehlting J (2014). Evolutionary classification of ammonium, nitrate, and peptide transporters in land plants.BMC Evol Biol 14, 11. |
54 | Wang YY, Hsu PK, Tsay YF (2012). Uptake, allocation and signaling of nitrate.Trends Plant Sci 17, 458-467. |
55 | Wang YY, Tsay YF (2011). Arabidopsis nitrate transporter NRT1.9 is important in phloem nitrate transport.Plant Cell 23, 1945-1957. |
56 | Yuan L, Graff L, Loqué D, Kojima S, Tsuchiya YN, Takahashi H, von Wirén N (2009). AtAMT1;4, a pollen- specific high-affinity ammonium transporter of the plasma membrane in Arabidopsis.Plant Cell Physiol 50, 13-25. |
57 | Yuan L, Loqué D, Kojima S, Rauch S, Ishiyama K, Inoue E, Takahashi H, von Wirén N (2007). The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters.Plant Cell 19, 2636-2652. |
[1] | Qingshui Yu xiaofeng ni Jiangling Zhu Zhi-Yao TANG Jing-Yun FANG. Effects of 10 years of nitrogen and phosphorus additions on leaf non-structural carbohydrates of dominant plants in two tropical rainforests in the Jianfengling, Hainan [J]. Chin J Plant Ecol, 2024, 48(6): 0-0. |
[2] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[3] | Kexin Cao, Jingwen Wang, Guo Zheng, Pengfeng Wu, Yingbin Li, Shuyan Cui. Effects of precipitation regime change and nitrogen deposition on soil nematode diversity in the grassland of northern China [J]. Biodiv Sci, 2024, 32(3): 23491-. |
[4] | Jianmin Zhou. A Combat Vehicle with a Smart Brake [J]. Chinese Bulletin of Botany, 2024, 59(3): 343-346. |
[5] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[6] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[7] | YAN Chen-Yi, GONG Ji-Rui, ZHANG Si-Qi, ZHANG Wei-Yuan, DONG Xue-De, HU Yu-Xia, YANG Gui-Sen. Effects of nitrogen addition on soil active organic carbon in a temperate grassland of Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(2): 229-241. |
[8] | SHU Wei-Wei, YANG Kun, MA Jun-Xu, MIN Hui-Lin, CHEN Lin, LIU Shi-Ling, HUANG Ri-Yi, MING An-Gang, MING Cai-Dao, TIAN Zu-Wei. Effects of nitrogen addition on the morphological and chemical traits of fine roots with different orders of Castanopsis hystrix [J]. Chin J Plant Ecol, 2024, 48(1): 103-112. |
[9] | Yongjie Niu, Quanhui Ma, Yu Zhu, Hairong Liu, Jiale Lü, Yuanchun Zou, Ming Jiang. Research progress on the impact of nitrogen deposition on grassland insect diversity [J]. Biodiv Sci, 2023, 31(9): 23130-. |
[10] | ZHANG Ying, ZHANG Chang-Hong, WANG Qi-Tong, ZHU Xiao-Min, YIN Hua-Jun. Difference of soil carbon sequestration between rhizosphere and bulk soil in a mountain coniferous forest in southwestern China under nitrogen deposition [J]. Chin J Plant Ecol, 2023, 47(9): 1234-1244. |
[11] | Jiaojiao Wu, Guanting Guo, Dong Chen, Xin Zhao, Mingzhong Long, Dengfu Wang, Xiaona Li. Review of diversity and nitrogen fixation potential of bryophyte-cyanobacteria associations [J]. Biodiv Sci, 2023, 31(8): 23081-. |
[12] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[13] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[14] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[15] | Xiaohua Zhu, Cheng Gao, Cong Wang, Peng Zhao. Research progress on the effect of urea on bacterial and fungal diversity in soil [J]. Biodiv Sci, 2023, 31(6): 22636-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||