1 |
任海, 彭少麟, 张祝平, 张文其 (1996). 鼎湖山季风常绿阔叶林林冠结构与冠层辐射研究. 生态学报 16, 174-179.
|
2 |
杨冬梅, 占峰, 张宏伟 (2012). 清凉峰不同海拔木本植物小枝内叶大小-数量权衡关系. 植物生态学报 36, 281-291.
|
3 |
Ackerly DD, Donoghue MJ (1998). Leaf size, sapling allometry, and Corner's rules: phylogeny and correlated evolution in maples (Acer).Am Nat 152, 767-791.
|
4 |
Ackerly DD, Knight C, Weiss S, Barton K, Starmer K (2002). Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses.Oecologia 130, 449-457.
|
5 |
Ackerly DD, Reich PB (1999). Convergence and corre- lations among leaf size and function in seed plants: a comparative test using independent contrasts.Am J Bot 86, 1272-1281.
|
6 |
Bonser SP, Aarssen LW (1994). Plastic allometry in young sugar maple (Acer saccharum): adaptive responses to light availability.Am J Bot 81, 400-406.
|
7 |
Givnish TJ (1978). Ecological aspects of plant morphology: leaf form in relation to environment.Acta Biotheor 27, 83-142.
|
8 |
Givnish TJ (1987). Comparative studies of leaf form: assessing the relative roles of selective pressures and phylogenetic constraints.New Phytol 106, 131-160.
|
9 |
Givnish TJ, Vermeij GJ (1976). Sizes and shapes of liane leaves.Am Nat 110, 743-778.
|
10 |
Gleason HA, Cronquist A (1991). Manual of Vascular Plants of Northeastern United States and Adjacent Canada. New York: The New York Botanical Garden.
|
11 |
Jakobsson A, Eriksson O (2000). A comparative study of seed number, seed size, seedling size and recruitment in grassland plants.Oikos 88, 494-502.
|
12 |
Jensen KH, Zwieniecki MA (2013). Physical limits to leaf size in tall trees.Phys Rev Lett 110, 018104.
|
13 |
Kleiman D, Aarssen LW (2007). The leaf size/number trade-off in trees.J Ecol 95, 376-382.
|
14 |
Li T, Deng JM, Wang GX, Cheng DL, Yu ZL (2009). Isometric scaling relationship between leaf number and size within current-year shoots of woody species across contrasting habitats.Polish J Ecol 57, 659-667.
|
15 |
Milla R (2009). The leafing intensity premium hypothesis tested across clades, growth forms and altitudes.J Ecol 97, 972-983.
|
16 |
Moles AT, Falster DS, Leishman MR, Westoby M (2004). Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime.J Ecol 92, 384-396.
|
17 |
Moles AT, Westoby M (2000). Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage?Oikos 90, 517-524.
|
18 |
Niinemets Ü (1998). Are compound-leaved woody species inherently shade-intolerant? An analysis of species ecological requirements and foliar support costs.Plant Ecol 134, 1-11.
|
19 |
Niinemets Ü, Portsmuth A, Tena D, Tobias M, Matesanz S, Valladares F (2007a). Do we underestimate the impor- tance of leaf size in plant economics? Disproportional scaling of support costs within the spectrum of leaf physiognomy.Ann Bot 100, 283-303.
|
20 |
Niinemets Ü, Portsmuth A, Tobias M (2006). Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants.New Phytol 171, 91-104.
|
21 |
Niinemets Ü, Portsmuth A, Tobias M (2007b). Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species: a neglected source of leaf physiological differentiation?Funct Ecol 21, 28-40.
|
22 |
Parkhurst DF, Loucks OL (1972). Optimal leaf size in relation to environment.J Ecol 60, 505-537.
|
23 |
Poorter H, Pepin S, Rijkers T, De Jong Y, Evans JR, Körner C (2006). Construction costs, chemical composi- tion and payback time of high-and low-irradiance leaves.J Exp Bot 57, 355-371.
|
24 |
R Core Team (2013). R: a language and environment for statistical computing. R Foundation for Statistical Compu- ting, Vienna, Austria. URL .
|
25 |
Ryan MG, Yoder BJ (1997). Hydraulic limits to tree height and tree growth.Bioscience 47, 235-242.
|
26 |
Shipley B, Dion J (1992). The allometry of seed production in herbaceous angiosperms.Am Nat 139, 467-483.
|
27 |
Stearns SC (1989). Trade-offs in life-history evolution.Funct Ecol 3, 259-268.
|
28 |
Sun SC, Jin DM, Shi PL (2006). The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship.Ann Bot 97, 97-107.
|
29 |
Venable DL (1992). Size-number trade-offs and the variation of seed size with plant resource status.Am Nat 140, 287-304.
|
30 |
Warton DI, Weber NC (2002). Common slope tests for bivariate errors-in-variables models.Biometrical J 44, 161-174.
|
31 |
Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry.Biol Rev 81, 259-291.
|
32 |
Watson MA, Casper BB (1984). Morphogenetic constraints on patterns of carbon distribution in plants.Annu Rev Ecol Syst 15, 233-258.
|
33 |
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: some leading dimensions of variation between species.Annu Rev Ecol Syst 33, 125-159.
|
34 |
Westoby M, Wright IJ (2003). The leaf size-twig size spectrum and its relationship to other important spectra of variation among species.Oecologia 135, 621-628.
|
35 |
Whitman T, Aarssen LW (2010). The leaf size/number trade-off in herbaceous angiosperms.J Plant Ecol 3, 49-58.
|
36 |
Wright IJ, Westoby M, Reich PB (2002). Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span.J Ecol 90, 534-543.
|
37 |
Yang DM, Li GY, Sun SC (2008). The generality of leaf size versus number trade-off in temperate woody species.Ann Bot 102, 623-629.
|