Chinese Bulletin of Botany ›› 2024, Vol. 59 ›› Issue (4): 533-543.DOI: 10.11983/CBB24015 cstr: 32102.14.CBB24015
• RESEARCH ARTICLE • Previous Articles Next Articles
Lei Gu, Qi Zhang, Xia Zhang, Bingbing Yang, Fanglan Wang, Wen Liu, Faju Chen*()
Received:
2024-01-30
Accepted:
2024-03-30
Online:
2024-07-10
Published:
2024-07-10
Contact:
*E-mail: chenfj616@163.com
Lei Gu, Qi Zhang, Xia Zhang, Bingbing Yang, Fanglan Wang, Wen Liu, Faju Chen. Cloning and Functional Analysis of APETALA3/DEFICIENS Homologous Gene from Rhus chinensis[J]. Chinese Bulletin of Botany, 2024, 59(4): 533-543.
Primers | Primer sequence (5'-3') | Primer usage |
---|---|---|
RcAP3-CDS-F | ATGGCTCGAGGAAAGATCCAG | CDS cloning and positive plant identification |
RcAP3-CDS-R | CTAGTCAAGCAAGGGGGAGG | |
RcTM6-CDS-F | ATGGGTCGCGGAAAGATTG | |
RcTM6-CDS-R | TCAACCAAGGCTGAGATTGTTG | |
qRcAP3-CDS-F | GAAGAAGGTAAGGAGTGTGACAG | Real-time fluorescent quantitative PCR |
qRcAP3-CDS-R | AGGTGGTGAGATCTGAGCCTG | |
qRcTM6-CDS-F | CGTCCGTGAAAGAAAGTACCATG | |
qRcTM6-CDS-R | GCGTACAGGTTAGATGCTCC | |
qPP2A-F | TCCACCGTCCGATCATCAGAAC | Reference gene |
qPP2A-R | GCACGTTCCATTCCTCCACC | |
ap3-jianceF1 | ATGGCGAGAGGGAAGATCC | Detection of ap3 gene-pure plants in Arabidopsis thaliana |
ap3-jianceR1 | GATCAAGAGGATAGAGAACCAGACAAACAGA | |
ap3-jianceF2 | ACAGTTTCCTCTTGGTTTCTTGC | |
ap3-jianceR2 | CGCATCAAGAATTTAACCAACCAGCG |
Table 1 Primer sequences used in this study
Primers | Primer sequence (5'-3') | Primer usage |
---|---|---|
RcAP3-CDS-F | ATGGCTCGAGGAAAGATCCAG | CDS cloning and positive plant identification |
RcAP3-CDS-R | CTAGTCAAGCAAGGGGGAGG | |
RcTM6-CDS-F | ATGGGTCGCGGAAAGATTG | |
RcTM6-CDS-R | TCAACCAAGGCTGAGATTGTTG | |
qRcAP3-CDS-F | GAAGAAGGTAAGGAGTGTGACAG | Real-time fluorescent quantitative PCR |
qRcAP3-CDS-R | AGGTGGTGAGATCTGAGCCTG | |
qRcTM6-CDS-F | CGTCCGTGAAAGAAAGTACCATG | |
qRcTM6-CDS-R | GCGTACAGGTTAGATGCTCC | |
qPP2A-F | TCCACCGTCCGATCATCAGAAC | Reference gene |
qPP2A-R | GCACGTTCCATTCCTCCACC | |
ap3-jianceF1 | ATGGCGAGAGGGAAGATCC | Detection of ap3 gene-pure plants in Arabidopsis thaliana |
ap3-jianceR1 | GATCAAGAGGATAGAGAACCAGACAAACAGA | |
ap3-jianceF2 | ACAGTTTCCTCTTGGTTTCTTGC | |
ap3-jianceR2 | CGCATCAAGAATTTAACCAACCAGCG |
Species | Protein | GenBank ID |
---|---|---|
Rhus chinensis | RcAP3 | OR962159 |
R. chinensis | RcTM6 | OR962160 |
Nicotiana tabacum | NtDEF | CAA65288 |
Petunia × hybrida | PhDEF | AAQ72510 |
Solanum lycopersicum | SolyDEF | CAJ53871 |
Antirrhinum majus | AmDEF | P23706 |
Torenia fournieri | TofoDEF | BAG24492 |
Gerbera hybrid | GDEF2 | CAA08803 |
Arabidopsis thaliana | AtAP3 | NP_191002 |
Pistacia vera | PvAP3 | OR962159 |
Mangifera indica | MinAP3 | XP_044510378 |
Lotus japonicus | LojaAP3 | AAX13301 |
Gongora galeata | GogaDEF | ACR16038 |
Oncidium hybrid | OMADS9 | ADJ67235 |
Dendrobium crumenatum | DecrAP3 | AAZ95249 |
Spiranthes odorata | SpodDEF | ACR16049 |
Vanilla planifolia | VaplDEF | ACR16055 |
Asparagus officinalis | AODEF | BAC75969 |
Muscari armeniacum | MaDEF | BAE48147 |
Tulipa gesneriana | TGDEFA | BAC75970 |
T. gesneriana | TGDEFB | BAC75971 |
Lilium longiflorum | LMADS1 | AAM27456 |
Monotropa hypopitys | MhTM6 | AQM52303 |
Tradescantia ohiensis | TrohDEF | BAD80745 |
Commelina communis | CocoAP3 | BAD80747 |
Oryza sativa | OsMADS16 | Q944S9 |
Chimonanthus praecox | ChprAP3 | ABK34952 |
Akebia trifoliata | AktAP3-1 | AAT46097 |
Hydrangea macrophylla | HmTM6 | AAF73932 |
Petunia × hybrida | PhTM6 | AAS46017 |
Helianthus annuus | HAM91 | AAO18231 |
Rosa rugosa | MASAKO B3 | BAB63261 |
Prunus avium | PaTM6 | BAT57494 |
Malus domestica | MdTM6 | BAC11907 |
Ma. domestica | MdMADS13 | CAC80856 |
Pistacia vera | PvTM6 | XP_031264419 |
Mangifera indica | MinTM6 | XP_044469431 |
Philadelphus pubescens | PhpTM6 | ACY08886 |
Vitis vinifera | VvTM6 | ABI98021 |
Saurauia zahlbruckneri | SzTM6 | ACY08897 |
Actinidia chinensis | AcAP3 | ADU15473 |
Ar. thaliana | AtPI | NP_197524 |
Table 2 GenBank number of protein sequences used for constructing the phylogenetic tree
Species | Protein | GenBank ID |
---|---|---|
Rhus chinensis | RcAP3 | OR962159 |
R. chinensis | RcTM6 | OR962160 |
Nicotiana tabacum | NtDEF | CAA65288 |
Petunia × hybrida | PhDEF | AAQ72510 |
Solanum lycopersicum | SolyDEF | CAJ53871 |
Antirrhinum majus | AmDEF | P23706 |
Torenia fournieri | TofoDEF | BAG24492 |
Gerbera hybrid | GDEF2 | CAA08803 |
Arabidopsis thaliana | AtAP3 | NP_191002 |
Pistacia vera | PvAP3 | OR962159 |
Mangifera indica | MinAP3 | XP_044510378 |
Lotus japonicus | LojaAP3 | AAX13301 |
Gongora galeata | GogaDEF | ACR16038 |
Oncidium hybrid | OMADS9 | ADJ67235 |
Dendrobium crumenatum | DecrAP3 | AAZ95249 |
Spiranthes odorata | SpodDEF | ACR16049 |
Vanilla planifolia | VaplDEF | ACR16055 |
Asparagus officinalis | AODEF | BAC75969 |
Muscari armeniacum | MaDEF | BAE48147 |
Tulipa gesneriana | TGDEFA | BAC75970 |
T. gesneriana | TGDEFB | BAC75971 |
Lilium longiflorum | LMADS1 | AAM27456 |
Monotropa hypopitys | MhTM6 | AQM52303 |
Tradescantia ohiensis | TrohDEF | BAD80745 |
Commelina communis | CocoAP3 | BAD80747 |
Oryza sativa | OsMADS16 | Q944S9 |
Chimonanthus praecox | ChprAP3 | ABK34952 |
Akebia trifoliata | AktAP3-1 | AAT46097 |
Hydrangea macrophylla | HmTM6 | AAF73932 |
Petunia × hybrida | PhTM6 | AAS46017 |
Helianthus annuus | HAM91 | AAO18231 |
Rosa rugosa | MASAKO B3 | BAB63261 |
Prunus avium | PaTM6 | BAT57494 |
Malus domestica | MdTM6 | BAC11907 |
Ma. domestica | MdMADS13 | CAC80856 |
Pistacia vera | PvTM6 | XP_031264419 |
Mangifera indica | MinTM6 | XP_044469431 |
Philadelphus pubescens | PhpTM6 | ACY08886 |
Vitis vinifera | VvTM6 | ABI98021 |
Saurauia zahlbruckneri | SzTM6 | ACY08897 |
Actinidia chinensis | AcAP3 | ADU15473 |
Ar. thaliana | AtPI | NP_197524 |
Figure 2 The relative expression patterns of RcAP3 and RcTM6 (A), (B) Expression of RcAP3 and RcTM6 at different stages of flower bud development (One-way analysis of ANOVA by Waller-Duncan, different lowercase letters indicate significant differences at P<0.05); (C) Expression levels of RcAP3 and RcTM6 in different organs in the middle stage of flower buds of hermaphroditic flower (* P<0.05, *** P<0.001).
Parameter | RcAP3 | RcTM6 |
---|---|---|
Formula | C1118H1824N328O348S5 | C1125H1789N325O343S6 |
Molecular mass (kDa) | 25.59 | 25.55 |
Total number of atoms | 3623 | 3588 |
Theoretical pI | 9.23 | 9.33 |
Total number of negatively char- ged residues (Asp+Glu) | 30 | 29 |
Total number of positively char- ged residues (Arg+Lys) | 35 | 36 |
Instability index | 48.17 | 40.95 |
Aliphatic index | 86.82 | 73.50 |
Grand average of hydropathicity | -0.754 | -0.749 |
Signal peptide | None | None |
Transmembrane domain | None | None |
Table 3 Analysis of physicochemical properties of RcAP3 and RcTM6 proteins
Parameter | RcAP3 | RcTM6 |
---|---|---|
Formula | C1118H1824N328O348S5 | C1125H1789N325O343S6 |
Molecular mass (kDa) | 25.59 | 25.55 |
Total number of atoms | 3623 | 3588 |
Theoretical pI | 9.23 | 9.33 |
Total number of negatively char- ged residues (Asp+Glu) | 30 | 29 |
Total number of positively char- ged residues (Arg+Lys) | 35 | 36 |
Instability index | 48.17 | 40.95 |
Aliphatic index | 86.82 | 73.50 |
Grand average of hydropathicity | -0.754 | -0.749 |
Signal peptide | None | None |
Transmembrane domain | None | None |
Figure 6 Yeast two-hybrid analysis of RcAP3 and RcTM6 protein interaction patterns AD: Activation domain; BD: Binding domain; NC: Negative control; PC: Positive control
Figure 7 Comparison of phenotypes of transgenic Arabidopsis thaliana (A) Wild-type (WT) of A. thaliana (Col-0); (B) pBI121 empty vector to Arabidopsis Col-0; (C), (D) 35S::RcAP3 transgenic Arabidopsis in a Col-0 background; (E)-(I) 35S::RcTM6 transgenic Arabidopsis in a Col-0 background; (J) ap3-3 homozygous mutants; (K), (L) 35S::RcAP3 transgenic Arabidopsis in a ap3-3 homozygous background. (A)-(H), (J)-(L) Bars=1 mm; (I) Bar=1 cm
[1] |
Broholm SK, Pöllänen E, Ruokolainen S, Tähtiharju S, Kotilainen M, Albert VA, Elomaa P, Teeri TH (2010). Functional characterization of B class MADS-box transcription factors in Gerbera hybrida. J Exp Bot 61, 75-85.
DOI PMID |
[2] | Cao X, Liu XY, Wang XT, Yang MX, van Giang T, Wang J, Liu XL, Sun S, Wei K, Wang XX, Gao JC, Du YC, Qin Y, Guo YM, Huang ZJ (2019). B-class MADS-box TM6 is a candidate gene for tomato male sterile-1526. Theor Appl Genet 132, 2125-2135. |
[3] |
Causier B, Castillo R, Xue Y, Schwarz-Sommer Z, Davies B (2010). Tracing the evolution of the floral homeotic B- and C-function genes through genome synteny. Mol Biol Evol 27, 2651-2664.
DOI PMID |
[4] |
Clough SJ, Bent AF (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16, 735-743.
DOI PMID |
[5] |
de Martino G, Pan I, Emmanuel E, Levy A, Irish VF (2006). Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development. Plant Cell 18, 1833-1845.
DOI PMID |
[6] | Doyle JJ (1994). Evolution of a plant homeotic multigene family: toward connecting molecular systematics and molecular developmental genetics. Syst Biol 43, 307-328. |
[7] | Fang ZW, Qi R, Li XF, Liu ZX (2014). Ectopic expression of FaesAP3, a Fagopyrum esculentum (Polygonaceae) AP3 orthologous gene rescues stamen development in an Arabidopsis ap3mutant. Gene 550, 200-206. |
[8] | Goto K, Meyerowitz EM (1994). Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev 8, 1548-1560. |
[9] |
Hernández-Hernández T, Martínez-Castilla LP, Alvarez- Buylla ER (2007). Functional diversification of B MADS- box homeotic regulators of flower development: adaptive evolution in protein-protein interaction domains after major gene duplication events. Mol Biol Evol 24, 465-481.
PMID |
[10] |
Jack T, Brockman LL, Meyerowitz EM (1992). The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68, 683-697.
DOI PMID |
[11] | Jing DL, Chen WW, Shi M, Wang D, Xia Y, He Q, Dang JB, Guo QG, Liang GL (2020). Ectopic expression of an Eriobotrya japonica APETALA3 ortholog rescues the petal and stamen identities in Arabidopsis ap3-3 mutant. Biochem Biophys Res Commun 523, 33-38. |
[12] | Jing DL, Xia Y, Zhang SG, Wang JH (2016). Expression analysis of B-class MADS-box genes from Catalpa speciosa. Chin Bull Bot 51, 210-217. (in Chinese) |
景丹龙, 夏燕, 张守攻, 王军辉 (2016). 黄金树B类MADS- box基因表达特征分析. 植物学报 51, 210-217.
DOI |
|
[13] | Kim S, Yoo MJ, Albert VA, Farris JS, Soltis PS, Soltis DE (2004). Phylogeny and diversification of B-function MADS- box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication. Am J Bot 91, 2102-2118. |
[14] | Kramer EM, Irish VF (2000). Evolution of the petal and stamen developmental programs: evidence from comparative studies of the lower eudicots and basal angiosperms. Int J Plant Sci 161, S29-S40. |
[15] | Lai XL, Daher H, Galien A, Hugouvieux V, Zubieta C (2019). Structural basis for plant MADS transcription factor oligomerization. Comput Struct Biotechnol J 17, 946- 953. |
[16] | Lamb RS, Irish VF (2003). Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proc Natl Acad Sci USA 100, 6558-6563. |
[17] | Li B, Gao JY, Gong LM, Liu PA, Li SX (2015). Chemical constituents from Rhus chinensis fruit dregs. J Chin Medi Materials 38, 1209-1211. (in Chinese) |
李斌, 高洁莹, 龚力民, 刘平安, 李顺祥 (2015). 盐肤木果粕化学成分研究. 中药材 38, 1209-1211. | |
[18] | Li MC, Wang AD, Zhang YQ, Han TT, Guan L, Fan DX, Liu JY, Xu YN (2022). A comprehensive review on ethnobotanical, phytochemical and pharmacological aspects of Rhus chinensis Mill. J Ethnopharmacol 293, 115288. |
[19] | Li XF, Xu J, Yang R, Jia LY, Deng XJ, Xiong LJ, Zhang XP, Fang Q, Zhang W, Sun Y, Xu L (2013). Analysis of B-class genes NAP3L3 and NAP3L4 in Narcissus tazetta var. chinensis. Plant Mol Biol Rep 31, 255-263. |
[20] |
Litt A, Kramer EM (2010). The ABC model and the diversification of floral organ identity. Semin Cell Dev Biol 21, 129-137.
DOI PMID |
[21] |
Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CTmethod. Methods 25, 402-408.
DOI PMID |
[22] | Ma N, Cai SB, Sun YL, Chu CQ (2024). Chinese sumac (Rhus chinensis Mill.) fruits prevent hyperuricemia and uric acid nephropathy in mice fed a high-purine yeast diet. Nutrients 16, 184. |
[23] | Poupin MJ, Federici F, Medina C, Matus JT, Timmermann T, Arce-Johnson P (2007). Isolation of the three grape sub-lineages of B-class MADS-box TM6, PISTILLATA and APETALA3 genes which are differentially expressed during flower and fruit development. Gene 404, 10-24. |
[24] |
Rijpkema AS, Royaert S, Zethof J, van der Weerden G, Gerats T (2006). Analysis of the Petunia TM6 MADS box gene reveals functional divergence within the DEF/AP3 lineage. Plant Cell 18, 1819-1832.
PMID |
[25] | Rusanov K, Kovacheva N, Rusanova M, Linde M, Debener T, Atanassov I (2019). Genetic control of flower petal number in Rosa × Damascena Mill f. trigintipetala. Biotechnol Biotec Eq 33, 597-604. |
[26] | Shen GX, Jia Y, Wang WL (2021). Evolutionary divergence of motifs in B-class MADS-box proteins of seed plants. J Biol Res-Thessalon 28, 12. |
[27] | Shen GX, Yang CH, Shen CY, Huang KS (2019). Origination and selection of ABCDE and AGL6 subfamily MADS- box genes in gymnosperms and angiosperms. Biol Res 52, 25. |
[28] |
Sommer H, Beltrán JP, Huijser P, Pape H, Lönnig WE, Saedler H, Schwarz-Sommer Z (1990). Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homolo-gy to transcription factors. EMBO J 9, 605-613.
DOI PMID |
[29] | Sun FH, Fang HY, Wen XH, Zhang LS (2023). Phylogenetic and expression analysis of MADS-box gene family in Rhododendron ovatum. Chin Bull Bot 58, 404-416. (in Chinese) |
孙福辉, 方慧仪, 温小蕙, 张亮生 (2023). 马银花MADS- box基因家族系统进化与表达分析. 植物学报 58, 404-416.
DOI |
|
[30] |
Vandenbussche M, Zethof J, Royaert S, Weterings K, Gerats T (2004). The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. Plant Cell 16, 741-754.
DOI PMID |
[31] | Ye A, Zhang CL, Sun YL, Wang WN, He YH, Bao MZ (2017). Characterization and functional analysis of five MADS-Box B class genes related to floral organ identification in Tagetes erecta. PLoS One 12, e0169777. |
[32] | Zhang HQ, Han W, Linghu T, Zhao ZX, Wang AZ, Zhai R, Yang CQ, Xu LF, Wang ZG (2023). Overexpression of a pear B-class MADS-box gene in tomato causes male sterility. Fruit Res 3, 1. |
[33] | Zhang Q, Wang BG, Duan K, Wang LG, Wang M, Tang XM, Pan AH, Sui SZ, Wang GD (2011). The paleoAP3-type gene CpAP3, an ancestral B-class gene from the basal angiosperm Chimonanthus praecox, can affect stamen and petal development in higher eudicots. Dev Genes Evol 221, 83-93. |
[1] | Lu Dan, Wang Li, Song Fan, Tao Juhong, Zhang Dabing, Yuan Zheng. Cloning and Expression Pattern Analysis of Rice OsJMJ718 Alternative Polyadenylation Sequences During Reproductive Developmental Stage [J]. Chinese Bulletin of Botany, 2018, 53(5): 594-602. |
[2] | Niu Yanli, Bai Shenglong, Wang Qiyun, Liu Lingyun. Applications of Single-cell Technologies in Guard Cells [J]. Chinese Bulletin of Botany, 2017, 52(6): 788-796. |
[3] | Xiao Han, Kai Guo, Xinxin Li, Xu Liu, Bingrui Wang, Tao Xia, Liangcai Peng, Shengqiu Feng. Expression Profiling and Functional Prediction of Arabidopsis AtCESA Genes [J]. Chinese Bulletin of Botany, 2014, 49(5): 539-547. |
[4] | Chaowen She;*;Xianghui Jiang;Yunchun Song. Analysis of Organization and Expression Pattern of rRNA Gene in Maize [J]. Chinese Bulletin of Botany, 2010, 45(03): 345-353. |
[5] | Zhenzhen Yang;Ping Li;Chongying Wang*. Progress in Gene Trapping Mediated by T-DNA and Applications in Plant Functional Genomics [J]. Chinese Bulletin of Botany, 2008, 25(01): 112-120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||