Chinese Bulletin of Botany ›› 2022, Vol. 57 ›› Issue (3): 388-398.DOI: 10.11983/CBB21203
• SPECIAL TOPICS • Previous Articles
Yiling Wu1,2, Fanglan Li1,*(), Hui Hu1,2
Received:
2021-11-23
Accepted:
2022-03-18
Online:
2022-05-01
Published:
2022-05-18
Contact:
Fanglan Li
Yiling Wu, Fanglan Li, Hui Hu. The Structure and Function of Leaf Veins and Their Influence on Leaf Economic Spectrum[J]. Chinese Bulletin of Botany, 2022, 57(3): 388-398.
粗脉 | 细脉 | |
---|---|---|
叶脉分级 | 1-3级 | 4级及以上 |
结构特征 | 结构复杂; 含有较多的厚壁组织、厚角组织或纤维细胞, 具有较高的机械阻力和弹性; 含有1个或多个维管束, 木质部和韧皮部间常具有形成层; 易发生木质部栓塞 | 结构简单; 缺少维管束周围的坚固厚壁组织; 一般不具有形成层; 不易发生木质部栓塞 |
主要功能 | 长距离水分运输; 机械支持, 维持叶形; 抵抗生物损害及非生物干扰 | 短距离水分运输; 与气孔协作限制水分蒸发, 从而影响蒸腾作用和光合作用; 形成闭环, 为水分运输提供备选路径 |
Table 1 Structure and function of different vein orders in plants
粗脉 | 细脉 | |
---|---|---|
叶脉分级 | 1-3级 | 4级及以上 |
结构特征 | 结构复杂; 含有较多的厚壁组织、厚角组织或纤维细胞, 具有较高的机械阻力和弹性; 含有1个或多个维管束, 木质部和韧皮部间常具有形成层; 易发生木质部栓塞 | 结构简单; 缺少维管束周围的坚固厚壁组织; 一般不具有形成层; 不易发生木质部栓塞 |
主要功能 | 长距离水分运输; 机械支持, 维持叶形; 抵抗生物损害及非生物干扰 | 短距离水分运输; 与气孔协作限制水分蒸发, 从而影响蒸腾作用和光合作用; 形成闭环, 为水分运输提供备选路径 |
Figure 1 Correlation between leaf traits and leaf vein density The yellow variable is involved in the vein origin hypothesis; the pink variable is involved in the flux trait network hypothesis; the blue variable is the part involved in both hypotheses. A black solid arrow indicates a positive association, while a red arrow indicates a negative association; the dashed arrow indicates an indirect association.
[1] | 刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学 45, 325-339. |
[2] | 罗丽莹, 陈楠, 王云龙, 王光军 (2021). 闽楠叶形态与叶脉网络性状关系对城市生长环境的响应. 生态学报 41, 7838- 7847. |
[3] | 宋丽清, 胡春梅, 侯喜林, 石雷, 刘立安, 杨景成, 姜闯道 (2015). 高粱、紫苏叶脉密度与光合特性的关系. 植物学报 50, 100-106. |
[4] | 孙素静, 李芳兰, 包维楷 (2015). 叶脉网络系统的构建和系统学意义研究进展. 热带亚热带植物学报 23, 353-360. |
[5] | 徐龙, 贺鹏程, 张统, 刘慧, 叶清 (2020). 不同原生境的6种棕榈科植物叶片水力性状的对比研究. 热带亚热带植物学报 28, 472-478. |
[6] | 姚广前, 魏阳, 毕敏慧, 聂争飞, 方向文 (2018). 干旱胁迫下4种锦鸡儿属植物叶脉密度与最低水势关系. 中国沙漠 38, 1252-1258. |
[7] | 朱济友, 徐程扬, 刘亚培, 李金航, 黄涛, 覃国铭, 崔哲浩 (2019). 基于遥感的植物叶脉功能性状计算及其生态学意义. 生态科学 38, 209-216. |
[8] | Amakawa T (1981). Studies on the character of leaves for distinguishing tree-species in the field, 2. The venation of leaves of dicotyledons. Bulletin of Nakamura Gakuen University and Nakamura Gakuen Junior College 14, 13- 22. |
[9] |
Banavar JR, Maritan A, Rinaldo A (1999). Size and form in efficient transportation networks. Nature 399, 130-132.
DOI URL |
[10] |
Beerling DJ, Franks PJ (2010). The hidden cost of transpiration. Nature 464, 495-496.
DOI URL |
[11] |
Blonder B, Baldwin BG, Enquist BJ, Robichaux RH (2016). Variation and macroevolution in leaf functional traits in the Hawaiian silversword alliance (Asteraceae). J Ecol 104, 219-228.
DOI URL |
[12] |
Blonder B, Both S, Jodra M, Xu H, Fricker M, Matos IS, Majalap N, Burslem DFRP, Teh YA, Malhi Y (2020). Linking functional traits to multiscale statistics of leaf venation networks. New Phytol 228, 1796-1810.
DOI URL |
[13] |
Blonder B, Enquist BJ (2014). Inferring climate from angiosperm leaf venation networks. New Phytol 204, 116-126.
DOI URL |
[14] |
Blonder B, Vasseur F, Violle C, Shipley B, Enquist BJ, Vile D (2015). Testing models for the leaf economics spectrum with leaf and whole-plant traits in Arabidopsis thaliana. AoB Plants 7, plv049.
DOI URL |
[15] |
Blonder B, Violle C, Bentley LP, Enquist BJ (2011). Venation networks and the origin of the leaf economics spectrum. Ecol Lett 14, 91-100.
DOI URL |
[16] |
Blonder B, Violle C, Bentley LP, Enquist BJ (2014). Inclusion of vein traits improves predictive power for the leaf economic spectrum: a response to Sack et al. (2013). J Exp Bot 65, 5109-5114.
DOI URL |
[17] |
Blonder B, Violle C, Enquist BJ (2013). Assessing the causes and scales of the leaf economics spectrum using venation networks in Populu tremuloides. J Ecol 101, 981-989.
DOI URL |
[18] | Boyce CK, Brodribb TJ, Feild TS, Zwieniecki MA (2009). Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proc Biol Sci 276, 1771- 1776. |
[19] |
Brodribb TJ, Feild TS (2010). Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol Lett 13, 175-183.
DOI PMID |
[20] |
Brodribb TJ, Feild TS, Jordan GJ (2007). Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol 144, 1890-1898.
PMID |
[21] |
Brodribb TJ, Feild TS, Sack L (2010). Viewing leaf structure and evolution from a hydraulic perspective. Funct Plant Biol 37, 488-498.
DOI URL |
[22] |
Brodribb TJ, Jordan GJ (2011). Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees. New Phytol 192, 437-448.
DOI PMID |
[23] | Chen XP, Sun J, Wang MT, Lyu M, Niklas KJ, Michaletz ST, Zhong QL, Cheng DL (2020). The leaf economics spectrum constrains phenotypic plasticity across a light gradient. Front Plan Sci 11, 735. |
[24] |
Choat B, Lahr EC, Melcher PJ, Zwieniecki MA, Holbrook NM (2005). The spatial pattern of air seeding thresholds in mature sugar maple trees. Plant Cell Environ 28, 1082- 1089.
DOI URL |
[25] |
Coley PD (1983). Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecol Monogr 53, 209-234.
DOI URL |
[26] |
Dodds PS (2010). Optimal form of branching supply and collection networks. Phys Rev Lett 104, 048702.
DOI URL |
[27] |
Dow GJ, Berry JA, Bergmann DC (2013). The physiological importance of developmental mechanisms that enforce proper stomatal spacing in Arabidopsi thaliana. New Phytol 201, 1205-1217.
DOI URL |
[28] |
Dunbar-Co S, Sporck MJ, Sack L (2009). Leaf trait diversification and design in seven rare taxa of the Hawaiian plantago radiation. Int J Plant Sci 170, 61-75.
DOI URL |
[29] |
Durand M (2006). Architecture of optimal transport networks. Phys Rev E 73, 016116.
DOI URL |
[30] |
Durand M (2007). Structure of optimal transport networks subject to a global constraint. Phys Rev Lett 98, 088701.
DOI URL |
[31] |
Fajardo A, Siefert A (2018). Intraspecific trait variation and the leaf economics spectrum across resource gradients and levels of organization. Ecology 99, 1024-1030.
DOI PMID |
[32] |
Fiorin L, Brodribb TJ, Anfodillo T (2016). Transport efficiency through uniformity: organization of veins and stomata in angiosperm leaves. New Phytol 209, 216-227.
DOI PMID |
[33] |
Hickey LJ (1973). Classification of the architecture of dicotyledonous leaves. Am J Bot 60, 17-33.
DOI URL |
[34] |
Hua L, He P, Goldstein G, Liu H, Yin D, Zhu S, Ye Q (2020). Linking vein properties to leaf biomechanics across 58 woody species from a subtropical forest. Plant Biol J 22, 212-220.
DOI URL |
[35] |
Ji WL, LaZerte SE, Waterway MJ, Lechowicz MJ (2020). Functional ecology of congeneric variation in the leaf economics spectrum. New Phytol 225, 196-208.
DOI URL |
[36] |
John GP, Scoffoni C, Buckley TN, Villar R, Poorter H, Sack L (2017). The anatomical and compositional basis of leaf mass per area. Ecol Lett 20, 412-425.
DOI URL |
[37] |
Jordan GJ, Brodribb TJ, Blackman CJ, Weston PH (2013). Climate drives vein anatomy in Proteaceae. Am J Bot 100, 1483-1493.
DOI URL |
[38] |
Kang J, Dengler N (2004). Vein pattern development in adult leaves of Arabidopsi thaliana. Int J Plant Sci 165, 231-242.
DOI URL |
[39] |
Kang J, Mizukami Y, Wang H, Fowke L, Dengler NG (2007). Modification of cell proliferation patterns alters leaf vein architecture in Arabidopsi thaliana. Planta 226, 1207- 1218.
DOI URL |
[40] |
Katifori E, Szöllősi GJ, Magnasco MO (2010). Damage and fluctuations induce loops in optimal transport networks. Phys Rev Lett 104, 048704.
DOI URL |
[41] |
Kawai K, Okada N (2016). How are leaf mechanical properties and water-use traits coordinated by vein traits? A case study in Fagaceae. Funct Ecol 30, 527-536.
DOI URL |
[42] |
Kawai K, Okada N (2019). Leaf vascular architecture in temperate dicotyledons: correlations and link to functional traits. Planta 251, 17.
DOI URL |
[43] |
Kitajima K, Poorter L (2010). Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species. New Phytol 186, 708-721.
DOI PMID |
[44] |
Li FL, McCulloh KA, Sun SJ, Bao WK (2018). Linking leaf hydraulic properties, photosynthetic rates, and leaf lifespan in xerophytic species: a test of global hypotheses. Am J Bot 105, 1858-1868.
DOI URL |
[45] |
Lloyd J, Bloomfield K, Domingues TF, Farquhar GD (2013). Photosynthetically relevant foliar traits correlating better on a mass vs an area basis: of ecophysiological relevance or just a case of mathematical imperatives and statistical quicksand? New Phytol 199, 311-321.
DOI PMID |
[46] | Luo LY, Chen N, Wang YL, Wang GJ (2021). Response of leaf morphology and vein network traits of Phoebe bournei to urban growth environment. Acta Ecol Sin 41, 7838- 7847. |
[47] |
Martin AR, Isaac ME (2021). The leaf economics spectrum’s morning coffee: plant size-dependent changes in leaf traits and reproductive onset in a perennial tree crop. Ann Bot 127, 483-493.
DOI URL |
[48] |
McKown AD, Cochard H, Sack L (2010). Decoding leaf hydraulics with a spatially explicit model: principles of venation architecture and implications for its evolution. Am Nat 175, 447-460.
DOI URL |
[49] |
Meziane D, Shipley B (2001). Direct and indirect relationships between specific leaf area, leaf nitrogen and leaf gas exchange. Effects of irradiance and nutrient supply. Ann Bot 88, 915-927.
DOI URL |
[50] |
Murphy MRC, Jordan GJ, Brodribb TJ (2012). Differential leaf expansion can enable hydraulic acclimation to sun and shade. Plant Cell Environ 35, 1407-1418.
DOI URL |
[51] |
Nardini A, Pedà G, La Rocca N (2012). Trade-offs between leaf hydraulic capacity and drought vulnerability: morpho-anatomical bases, carbon costs and ecological consequences. New Phytol 196, 788-798.
DOI PMID |
[52] |
Nardini A, Ramani M, Gortan E, Salleo S (2008). Vein recovery from embolism occurs under negative pressure in leaves of sunflower (Helianthus annuus). Physiol Plant 133, 755-764.
DOI PMID |
[53] |
Navas ML, Ducout B, Roumet C, Richarte J, Garnier J, Garnier E (2003). Leaf life span, dynamics and construction cost of species from Mediterranean old-fields differing in successional status. New Phytol 159, 213-228.
DOI URL |
[54] |
Niinemets Ü (1999). Research review. Components of leaf dry mass per area-thickness and density-alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytol 144, 35-47.
DOI URL |
[55] | Niinemets Ü, Portsmuth A, Tobias M (2007). Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species: a neglected source of leaf physiological differentiation? Funct Ecol 21, 28-40. |
[56] | Niinemets Ü, Sack L (2006). Structural determinants of leaf light-harvesting capacity and photosynthetic potentials. In: Esser K, Lüttge U, Beyschlag W, Murata J, eds. Progress in Botany. Berlin, Heidelberg: Springer. pp. 385-419. |
[57] |
Niklas KJ (1999). A mechanical perspective on foliage leaf form and function. New Phytol 143, 19-31.
DOI URL |
[58] |
Noblin X, Mahadevan L, Coomaraswamy IA, Weitz DA, Holbrook NM, Zwieniecki MA (2008). Optimal vein density in artificial and real leaves. Proc Natl Acad Sci USA 105, 9140-9144.
DOI URL |
[59] |
Onoda Y, Westoby M, Adler PB, Choong AMF, Clissold FJ, Cornelissen JHC, Díaz S, Dominy NJ, Elgart A, Enrico L, Fine PVA, Howard JJ, Jalili A, Kitajima K, Kurokawa H, McArthur C, Lucas PW, Markesteijn L, Pérez-Harguindeguy N, Poorter L, Richards L, Santiago LS, Sosinski EE Jr, Van Bael SA, Warton DI, Wright IJ, Wright SJ, Yamashita N (2011). Global patterns of leaf mechanical properties. Ecol Lett 14, 301-312.
DOI URL |
[60] |
Osnas JLD, Lichstein JW, Reich PB, Pacala SW (2013). Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science 340, 741-744.
DOI URL |
[61] |
Poorter H, Niinemets U, Poorter L, Wright IJ, Villar R (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182, 565-588.
DOI URL |
[62] |
Price CA, Wing S, Weitz JS (2012). Scaling and structure of dicotyledonous leaf venation networks. Ecol Lett 15, 87- 95.
DOI URL |
[63] |
Read J, Sanson GD (2003). Characterizing sclerophylly: the mechanical properties of a diverse range of leaf types. New Phytol 160, 81-99.
DOI URL |
[64] |
Read J, Stokes A (2006). Plant biomechanics in an ecological context. Am J Bot 93, 1546-1565.
DOI URL |
[65] |
Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci USA 94, 13730-13734.
DOI URL |
[66] |
Roderick ML, Berry SL, Noble IR, Farquhar GD (1999). A theoretical approach to linking the composition and morphology with the function of leaves. Funct Ecol 13, 683- 695.
DOI URL |
[67] |
Rolland-Lagan AG, Amin M, Pakulska M (2009). Quantifying leaf venation patterns: two-dimensional maps. J Plant 57, 195-205.
DOI URL |
[68] |
Roth-Nebelsick A, Uhl D, Mosbrugger V, Kerp H (2001). Evolution and function of leaf venation architecture: a review. Ann Bot 87, 553-566.
DOI URL |
[69] |
Sack L, Cowan PD, Jaikumar N, Holbrook NM (2003). The ‘hydrology’ of leaves: coordination of structure and function in temperate woody species. Plant Cell Environ 26, 1343-1356.
DOI URL |
[70] |
Sack L, Holbrook NM (2006). Leaf hydraulics. Annu Rev Plant Biol 57, 361-381.
DOI URL |
[71] |
Sack L, Scoffoni C (2013). Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol 198, 983-1000.
DOI URL |
[72] |
Sack L, Scoffoni C, John GP, Poorter H, Mason CM, Mendez-Alonzo R, Donovan LA (2013). How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis. J Exp Bot 64, 4053-4080.
DOI URL |
[73] |
Sack L, Scoffoni C, McKown AD, Frole K, Rawls M, Havran JC, Tran H, Tran T (2012). Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nat Commun 3, 837.
DOI URL |
[74] |
Sack L, Streeter CM, Holbrook NM (2004). Hydraulic analysis of water flow through leaves of sugar maple and red oak. Plant Physiol 134, 1824-1833.
DOI URL |
[75] |
Schoch PG, Zinsou C, Sibi M (1980). Dependence of the stomatal index on environmental factors during stomatal differentiation in leaves of Vigna sinensis L. 1. Effect of light intensity. J Exp Bot 31, 1211-1216.
DOI URL |
[76] |
Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011). Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiol 156, 832-843.
DOI URL |
[77] |
Shipley B, Lechowicz MJ, Wright I, Reich PB (2006). Fundamental trade-offs generating the worldwide leaf eco- nomics spectrum. Ecology 87, 535-541.
PMID |
[78] |
Turgeon R (2006). Phloem loading: how leaves gain their independence. BioScience 56, 15-24.
DOI URL |
[79] | Tyree MT, Sobrado M, Stratton LJ, Becker P (1999). Diversity of hydraulic conductance in leaves of temperate and tropical species: possible causes and consequences. J Trop For Sci 11, 47-60. |
[80] |
Uhl D, Mosbrugger V (1999). Leaf venation density as a climate and environmental proxy: a critical review and new data. Palaeogeogr Palaeoclimatol Palaeoecol 149, 15-26.
DOI URL |
[81] |
Van Arendonk JJCM, Poorter H (1994). The chemical composition and anatomical structure of leaves of grass species differing in relative growth rate. Plant Cell Environ 17, 963-970.
DOI URL |
[82] |
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos 116, 882-892.
DOI URL |
[83] |
Westoby M, Reich PB, Wright IJ (2013). Understanding ecological variation across species: area-based vs mass- based expression of leaf traits. New Phytol 199, 322-323.
DOI PMID |
[84] |
Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets U, Oleksyn J, Osada N, Poorter H, Warton DI, Westoby M (2005). Modulation of leaf economic traits and trait relationships by climate. Glob Ecol Biogeogr 14, 411-421.
DOI URL |
[85] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum. Nature 428, 821-827.
DOI URL |
[86] |
Wright IJ, Westoby M (2002). Leaves at low versus high rainfall: coordination of structure, lifespan and physiology. New Phytol 155, 403-416.
DOI PMID |
[87] |
Xu H, Blonder B, Jodra M, Malhi Y, Fricker M (2021). Automated and accurate segmentation of leaf venation networks via deep learning. New Phytol 229, 631-648.
DOI URL |
[88] |
Zwieniecki MA, Boyce CK, Holbrook NM (2004). Hydraulic limitations imposed by crown placement determine final size and shape of Quercus rubra L. leaves. Plant Cell Environ 27, 357-365.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||