Chinese Bulletin of Botany ›› 2021, Vol. 56 ›› Issue (6): 647-650.DOI: 10.11983/CBB21177
• COMMENTARY • Next Articles
Received:
2021-10-12
Accepted:
2021-10-18
Online:
2021-11-01
Published:
2021-11-12
Contact:
Dong Liu
Dong Liu. Managing Both Internal and Foreign Affairs—A PHR-centered Gene Network Regulates Plant-mycorrhizal Symbiosis[J]. Chinese Bulletin of Botany, 2021, 56(6): 647-650.
Figure 1 Two pathways for plants to obtain Pi from soil (1) Root epidermal cells uptake Pi from soil directly; (2) Root cortex cells form symbiosis with arbuscular mycorrhiza fungi which uptake Pi from soil and provide them to root tissues.
[1] | Bustos R, Castrillo G, Linhares F, Puga MI, Rubio V, Pérez-Pérez J, Solano R, Leyva A, Paz-Ares J (2010). A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet 6, e1001102. |
[2] |
Dong JS, Ma GJ, Sui LQ, Wei MW, Satheesh V, Zhang RY, Ge SH, Li JK, Zhang TE, Wittwer C, Jessen HJ, Zhang HM, An GY, Chao DY, Liu D, Lei MG (2019). Inositol pyrophosphate InsP8 acts as an intracellular phos- phate signal in Arabidopsis. Mol Plant 12, 1463-1473.
DOI URL |
[3] |
Jiang YN, Wang WX, Xie QJ, Liu N, Liu LX, Wang DP, Zhang XW, Yang C, Chen XY, Tang DZ, Wang ET (2017). Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356, 1172-1175.
DOI PMID |
[4] |
Liu F, Wang ZY, Ren HY, Shen CJ, Li Y, Ling HQ, Wu CY, Lian XM, Wu P (2010). OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice. Plant J 62, 508-517.
DOI URL |
[5] |
López-Arredondo DL, Leyva-González MA, González- Morales SI, López-Bucio J, Herrera-Estrella L (2014). Phosphate nutrition: improving low-phosphate tolerance in crops. Annu Rev Plant Biol 65, 95-123.
DOI PMID |
[6] |
Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV, Breakspear A, Oldroyd GED, Eastmond PJ (2017). Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plants. Science 356, 1175-1178.
DOI PMID |
[7] |
Puga MI, Mateos I, Charukesi R, Wang ZY, Franco-Zorrilla JM, de Lorenzo L, Irigoyen ML, Masiero S, Bustos R, Rodríguez J, Leyva A, Rubio V, Sommer H, Paz-Ares J (2014). SPX1 is a phosphate-dependent inhibitor of Phosphate Starvation Response 1 in Arabidopsis. Proc Natl Acad Sci USA 111, 14947-14952.
DOI URL |
[8] |
Rubio V, Linhares F, Solano R, Martín AC, Iglesias J, Leyva A, Paz-Ares J (2001). A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev 15, 2122-2133.
DOI URL |
[9] | Shi J, Zhao B, Zheng S, Zhang X, Wang X, Dong W, Xie Q, Gang W, Xiao Y, Chen F, Yu N, Wang E (2021). A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell https://doi.org/10.1016/j.cell.202109.030. |
[10] |
Smith SE, Jakobsen I, Grønlund M, Smith FA (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156, 1050-1057.
DOI URL |
[11] |
Sun LC, Song L, Zhang Y, Zheng Z, Liu D (2016). Arabidopsis PHL2 and PHR1 act redundantly as the key components of the central regulatory system controlling transcriptional responses to phosphate starvation. Plant Physiol 170, 499-514.
DOI URL |
[12] |
Wang P, Snijders R, Kohlen W, Liu JY, Bisseling T, Limpens E (2021). Medicago SPX1 and SPX3 regulate phosphate homeostasis, mycorrhizal colonization, and arbuscule degradation. Plant Cell doi: 10.1093/plcell/koab206.
DOI |
[13] |
Wang Z, Zheng Z, Song L, Liu D (2018). Functional charac- terization of Arabidopsis PHL4 in plant response to phosphate starvation. Front Plant Sci 9, 1432.
DOI PMID |
[14] |
Wang ZY, Ruan WY, Shi J, Zhang L, Xiang D, Yang C, Li CY, Wu ZC, Liu Y, Yu YN, Shou HX, Mo XR, Mao CZ, Wu P (2014). Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner. Proc Natl Acad Sci USA 111, 14953-14958.
DOI URL |
[15] |
Wild R, Gerasimaite R, Jung JY, Truffault V, Pavlovic I, Schmidt A, Saiardi A, Jessen HJ, Poirier Y, Hothorn M, Mayer A (2016). Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science 352, 986-990.
DOI URL |
[16] |
Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P (2008). OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol 146, 1673-1686.
DOI PMID |
[1] | Die Hu Xinqi Jiang DAI Zhicong Daiyi Chen Yu Zhang Shan-Shan Qi. Arbuscular mycorrhizal fungi enhance the herbicide tolerance of an invasive weed Sphagneticola trilobata [J]. Chin J Plant Ecol, 2024, 48(5): 651-659. |
[2] | Ke-Yu CHEN Sen Xing Yu Tang Sun JiaHui Shijie Ren Bao-Ming JI. Arbuscular mycorrhizal fungal community characteristics and driving factors in different grassland types [J]. Chin J Plant Ecol, 2024, 48(5): 660-674. |
[3] | CHEN Bao-Dong, FU Wei, WU Song-Lin, ZHU Yong-Guan. Involvements of mycorrhizal fungi in terrestrial ecosystem carbon cycling [J]. Chin J Plant Ecol, 2024, 48(1): 1-20. |
[4] | HE Fei, LI Chuan, Faisal SHAH, LU Xie-Min, WANG Ying, WANG Meng, RUAN Jia, WEI Meng-Lin, MA Xing-Guang, WANG Zhuo, JIANG Hao. Carbon transport and phosphorus uptake in an intercropping system of Robinia pseudoacacia and Amorphophallus konjac mediated by arbuscular mycorrhizal hyphal networks [J]. Chin J Plant Ecol, 2023, 47(6): 782-791. |
[5] | YANG Jia-Rong, DAI Dong, CHEN Jun-Fang, WU Xian, LIU Xiao-Lin, LIU Yu. Insight into recent studies on the diversity of arbuscular mycorrhizal fungi in shaping plant community assembly and maintaining rare species [J]. Chin J Plant Ecol, 2023, 47(6): 745-755. |
[6] | XIE Wei, HAO Zhi-Peng, ZHANG Xin, CHEN Bao-Dong. Research progress and prospect of signal transfer among plants mediated by arbuscular mycorrhizal networks [J]. Chin J Plant Ecol, 2022, 46(5): 493-515. |
[7] | MA Ju-Feng, XIN Min, XU Chen-Chao, ZHU Wan-Ying, MAO Chuan-Zao, CHEN Xin, CHENG Lei. Effects of arbuscular mycorrhizal fungi and nitrogen addition on nitrogen uptake of rice genotypes with different root morphologies [J]. Chin J Plant Ecol, 2021, 45(7): 728-737. |
[8] | PANG Fang, XIA Wei-Kang, HE Min, QI Shan-Shan, DAI Zhi-Cong, DU Dao-Lin. Nitrogen-fixing bacteria alleviates competition between arbuscular mycorrhizal fungi and Solidago canadensis for nutrients under nitrogen limitation [J]. Chin J Plant Ecol, 2020, 44(7): 782-790. |
[9] | Xue Han, Jinquan Su, Nana Yao, Baoming Chen. Advances in root foraging behavior of exotic invasive plants [J]. Biodiv Sci, 2020, 28(6): 727-733. |
[10] | CUI Li, GUO Feng, ZHANG Jia-Lei, YANG Sha, WANG Jian-Guo, MENG Jing-Jing, GENG Yun, LI Xin-Guo, WAN Shu-Bo. Improvement of continuous microbial environment in peanut rhizosphere soil by Funneliformis mosseae [J]. Chin J Plant Ecol, 2019, 43(8): 718-728. |
[11] | GAO Wen-Tong, ZHANG Chun-Yan, DONG Ting-Fa, XU Xiao. Effects of arbuscular mycorrhizal fungi on the root growth of male and female Populus cathayana individuals grown under different sexual combination patterns [J]. Chin J Plant Ecol, 2019, 43(1): 37-45. |
[12] | XU Li-Jiao, HAO Zhi-Peng, XIE Wei, LI Fang, CHEN Bao-Dong. Transmembrane H + and Ca 2+ fluxes through extraradical hyphae of arbuscular mycorrhizal fungi in response to drought stress [J]. Chin J Plant Ecol, 2018, 42(7): 764-773. |
[13] | LIU Hai-Yue, LI Xin-Mei, ZHANG Lin-Lin, WANG Jiao-Jiao, HE Xue-Li. Eco-geographical distribution of arbuscular mycorrhizal fungi associated with Hedysarum scoparium in the desert zone of northwestern China [J]. Chin J Plant Ecol, 2018, 42(2): 252-260. |
[14] | CHEN Bao-Ming, WEI Hui-Jie, CHEN Wei-Bin, ZHU Zheng-Cai, YUAN Ya-Ru, ZHANG Yong-Long, LAN Zhi-Gang. Effects of plant invasion on soil nitrogen transformation processes and its associated microbes [J]. Chin J Plant Ecol, 2018, 42(11): 1071-1081. |
[15] | Li-Jiao XU, Xue-Lian JIANG, Zhi-Peng HAO, Tao LI, Zhao-Xiang WU, Bao-Dong CHEN. Arbuscular mycorrhiza improves plant adaptation to phosphorus deficiency through regulating the expression of genes relevant to carbon and phosphorus metabolism [J]. Chin J Plant Ecol, 2017, 41(8): 815-825. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||