Chinese Bulletin of Botany ›› 2019, Vol. 54 ›› Issue (1): 37-45.DOI: 10.11983/CBB18019
• EXPERIMENTAL COMMUNICATIONS • Previous Articles Next Articles
Naiqi Tao1,Bin Zhang2,3,Xinkai Liu4,Heda Zhou2,Naisheng Zhong4,Danfeng Yan4,Min Zhang1,Jiyin Gao4,Wenju Zhang1,*()
Received:
2018-01-18
Accepted:
2018-04-28
Online:
2019-01-01
Published:
2019-07-31
Contact:
Wenju Zhang
Naiqi Tao,Bin Zhang,Xinkai Liu,Heda Zhou,Naisheng Zhong,Danfeng Yan,Min Zhang,Jiyin Gao,Wenju Zhang. Identification of 21 New Camellia Hybrid Varieties by Fluorescence-labelled Simple Sequence Repeat Markers[J]. Chinese Bulletin of Botany, 2019, 54(1): 37-45.
Cross combination No. | New variety No. | Parental types of cross combinations |
---|---|---|
ZH-01 | SJ-01 | Var. B (♀)×Var. A (♂) |
SJ-02 | Var. B (♀)×Var. A (♂) | |
SJ-03 | Var. B (♀)×Var. A (♂) | |
SJ-04 | Var. B (♀)×Var. A (♂) | |
ZH-02 | SJ-05 | Var. C (♀)×Var. A (♂) |
SJ-06 | Var. C (♀)×Var. A (♂) | |
SJ-07 | Var. C (♀)×Var. A (♂) | |
SJ-08 | Var. C (♀)×Var. A (♂) | |
ZH-03 | SJ-09 | Var. D (♀)×Var. A (♂) |
SJ-10 | Var. D (♀)×Var. A (♂) | |
SJ-11 | Var. D (♀)×Var. A (♂) | |
ZH-04 | SJ-12 | Var. E (♀)×Var. A (♂) |
ZH-05 | SJ-13 | Var. F (♀)×Var. A (♂) |
ZH-06 | SJ-14 | Var. A (♀)×Var. G (♂) |
SJ-15 | Var. A (♀)×Var. G (♂) | |
SJ-16 | Var. A (♀)×Var. G (♂) | |
ZH-07 | SJ-17 | Var. A (♀)×Var. H (♂) |
SJ-18 | Var. A (♀)×Var. H (♂) | |
ZH-08 | SJ-19 | Var. A (♀)×Var. I (♂) |
ZH-09 | SJ-20 | Var. A (♀)×Var. J (♂) |
ZH-10 | SJ-21 | Var. A (♀)×Var. K (♂) |
Table 1 Information of 21 new Camellia hybrid varieties in this study
Cross combination No. | New variety No. | Parental types of cross combinations |
---|---|---|
ZH-01 | SJ-01 | Var. B (♀)×Var. A (♂) |
SJ-02 | Var. B (♀)×Var. A (♂) | |
SJ-03 | Var. B (♀)×Var. A (♂) | |
SJ-04 | Var. B (♀)×Var. A (♂) | |
ZH-02 | SJ-05 | Var. C (♀)×Var. A (♂) |
SJ-06 | Var. C (♀)×Var. A (♂) | |
SJ-07 | Var. C (♀)×Var. A (♂) | |
SJ-08 | Var. C (♀)×Var. A (♂) | |
ZH-03 | SJ-09 | Var. D (♀)×Var. A (♂) |
SJ-10 | Var. D (♀)×Var. A (♂) | |
SJ-11 | Var. D (♀)×Var. A (♂) | |
ZH-04 | SJ-12 | Var. E (♀)×Var. A (♂) |
ZH-05 | SJ-13 | Var. F (♀)×Var. A (♂) |
ZH-06 | SJ-14 | Var. A (♀)×Var. G (♂) |
SJ-15 | Var. A (♀)×Var. G (♂) | |
SJ-16 | Var. A (♀)×Var. G (♂) | |
ZH-07 | SJ-17 | Var. A (♀)×Var. H (♂) |
SJ-18 | Var. A (♀)×Var. H (♂) | |
ZH-08 | SJ-19 | Var. A (♀)×Var. I (♂) |
ZH-09 | SJ-20 | Var. A (♀)×Var. J (♂) |
ZH-10 | SJ-21 | Var. A (♀)×Var. K (♂) |
No. | Primer sequences (5′-3′) | Repeat motifs | Ta (°C) | References |
---|---|---|---|---|
478 | F: CAACACCACCAACAAGA | (AAAGG)4 | 53 | Liu et al., 2008 |
R: GATATGAGATCCGTCCC | ||||
SSR2 | F: TATTGCCTACGACCATTTCCA | (GA)14 | 56 | Kaundun and Matsumoto, 2002 |
R: TTTGAGTTCGTTGCCTTCTCT | ||||
CamsinM11 | F: GCATCATTCCACCACTCACC | (CA)12 | 60 | Freeman et al., 2004 |
R: GTCATCAAACCAGTGGCTCA | ||||
CamSSR01 | F: CCAACAAGAATCAGGAAGAG | (AAT)6 | 54 | In this study |
R: ATCCAACGGTGGTAGACGAG | ||||
CamSSR02 | F: AGTTCCGCCTCCAGTTTGAC | (ACG)7 | 54 | In this study |
R: GGACCGAGAGGTAACAGTGG | ||||
CamSSR03 | F: GCCACTACCCTCTTTACACC | (CAC)7 | 55 | In this study |
R: TTCTCTTCCTCTTTCTTCCC | ||||
CamSSR04 | F: ATGTGTTGAGTAGCGAGCGT | (AT)10 | 56 | In this study |
R: TTGTCCATCTTTATGTAGGG | ||||
CamSSR05 | F: GCAAACACCAACTGATTACC | (TA)10 | 56 | In this study |
R: TTCCATACAACTCAACCAAA | ||||
CamSSR06 | F: GGTTTGGAAAAAGGACACGC | (GCC)7 | 58 | In this study |
R: AATCTGCCTCTGGTAGTCCG | ||||
CamSSR07 | F: TCTCATCCCCATCTTTATCC | (TCC)7 | 58 | In this study |
R: GTTCCCTGCTGCTGTTGTTA | ||||
CamSSR08 | F: TCACCAGTCACTTTCCCTCC | (AC)10 | 58 | In this study |
R: CCACCAAAAGGCACAATACC | ||||
CamSSR09 | F: CATCATCCATCAAACCGTCC | (AT)10 | 58 | In this study |
R: GAAGGCACATTGGTTCTGGG |
Table 2 Information of 12 primer pairs in this study
No. | Primer sequences (5′-3′) | Repeat motifs | Ta (°C) | References |
---|---|---|---|---|
478 | F: CAACACCACCAACAAGA | (AAAGG)4 | 53 | Liu et al., 2008 |
R: GATATGAGATCCGTCCC | ||||
SSR2 | F: TATTGCCTACGACCATTTCCA | (GA)14 | 56 | Kaundun and Matsumoto, 2002 |
R: TTTGAGTTCGTTGCCTTCTCT | ||||
CamsinM11 | F: GCATCATTCCACCACTCACC | (CA)12 | 60 | Freeman et al., 2004 |
R: GTCATCAAACCAGTGGCTCA | ||||
CamSSR01 | F: CCAACAAGAATCAGGAAGAG | (AAT)6 | 54 | In this study |
R: ATCCAACGGTGGTAGACGAG | ||||
CamSSR02 | F: AGTTCCGCCTCCAGTTTGAC | (ACG)7 | 54 | In this study |
R: GGACCGAGAGGTAACAGTGG | ||||
CamSSR03 | F: GCCACTACCCTCTTTACACC | (CAC)7 | 55 | In this study |
R: TTCTCTTCCTCTTTCTTCCC | ||||
CamSSR04 | F: ATGTGTTGAGTAGCGAGCGT | (AT)10 | 56 | In this study |
R: TTGTCCATCTTTATGTAGGG | ||||
CamSSR05 | F: GCAAACACCAACTGATTACC | (TA)10 | 56 | In this study |
R: TTCCATACAACTCAACCAAA | ||||
CamSSR06 | F: GGTTTGGAAAAAGGACACGC | (GCC)7 | 58 | In this study |
R: AATCTGCCTCTGGTAGTCCG | ||||
CamSSR07 | F: TCTCATCCCCATCTTTATCC | (TCC)7 | 58 | In this study |
R: GTTCCCTGCTGCTGTTGTTA | ||||
CamSSR08 | F: TCACCAGTCACTTTCCCTCC | (AC)10 | 58 | In this study |
R: CCACCAAAAGGCACAATACC | ||||
CamSSR09 | F: CATCATCCATCAAACCGTCC | (AT)10 | 58 | In this study |
R: GAAGGCACATTGGTTCTGGG |
Primers | Na | Ne | PIC |
---|---|---|---|
478 | 7.00 | 4.12 | 0.72 |
SSR2 | 6.00 | 2.63 | 0.58 |
CamsinM11 | 4.00 | 1.85 | 0.43 |
CamSSR01 | 3.00 | 1.48 | 0.29 |
CamSSR02 | 4.00 | 2.97 | 0.62 |
CamSSR03 | 6.00 | 4.96 | 0.77 |
CamSSR04 | 6.00 | 2.99 | 0.62 |
CamSSR05 | 4.00 | 2.82 | 0.58 |
CamSSR06 | 4.00 | 1.76 | 0.41 |
CamSSR07 | 4.00 | 1.58 | 0.35 |
CamSSR08 | 6.00 | 4.96 | 0.77 |
CamSSR09 | 5.00 | 2.32 | 0.49 |
(mean) | 4.92 | 2.87 | 0.55 |
Table 3 The number of alleles and polymorphism of 12 SSR loci
Primers | Na | Ne | PIC |
---|---|---|---|
478 | 7.00 | 4.12 | 0.72 |
SSR2 | 6.00 | 2.63 | 0.58 |
CamsinM11 | 4.00 | 1.85 | 0.43 |
CamSSR01 | 3.00 | 1.48 | 0.29 |
CamSSR02 | 4.00 | 2.97 | 0.62 |
CamSSR03 | 6.00 | 4.96 | 0.77 |
CamSSR04 | 6.00 | 2.99 | 0.62 |
CamSSR05 | 4.00 | 2.82 | 0.58 |
CamSSR06 | 4.00 | 1.76 | 0.41 |
CamSSR07 | 4.00 | 1.58 | 0.35 |
CamSSR08 | 6.00 | 4.96 | 0.77 |
CamSSR09 | 5.00 | 2.32 | 0.49 |
(mean) | 4.92 | 2.87 | 0.55 |
Code of pattern | Cam- SSR08 | Cam- SSR04 | 478 | SSR2 | Cam- SSR03 | Cam- SSR09 | Cam- SSR06 | Cam- sinM11 | Cam- SSR01 | Cam- SSR07 | Cam- SSR05 | Cam- SSR02 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 125/131 | 165/167 | 113/115 | 217 | 278/313 | 209/215 | 176/185 | 171 | 188/200 | 206 | 234/240 | 271/274 |
2 | 125/135 | 165/171 | 113/129 | 217/219 | 278/321 | 211/217 | 179/182 | 173 | 195 | 206/212 | 234/242 | 271/277 |
3 | 127 | 167 | 115 | 217/225 | 278/322 | 213/215 | 179/185 | 177 | 195/200 | 206/215 | 236/240 | 271/283 |
4 | 127/131 | 167/171 | 115/129 | 217/227 | 278/323 | 215 | 182/185 | 181 | 200 | 206/221 | ||
5 | 129 | 167/173 | 117/129 | 217/231 | 307/321 | 215/217 | 185 | |||||
6 | 129/131 | 169/171 | 121/129 | 217/235 | 307/322 | 217 | ||||||
7 | 129/133 | 171 | 123/129 | 219/235 | 307/323 | |||||||
8 | 129/135 | 171/173 | 123/133 | |||||||||
9 | 131/133 | 171/175 | ||||||||||
A | 133 | |||||||||||
B | 133/135 |
Table 4 The encode standard of genotypes at 12 SSR loci in this study
Code of pattern | Cam- SSR08 | Cam- SSR04 | 478 | SSR2 | Cam- SSR03 | Cam- SSR09 | Cam- SSR06 | Cam- sinM11 | Cam- SSR01 | Cam- SSR07 | Cam- SSR05 | Cam- SSR02 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 125/131 | 165/167 | 113/115 | 217 | 278/313 | 209/215 | 176/185 | 171 | 188/200 | 206 | 234/240 | 271/274 |
2 | 125/135 | 165/171 | 113/129 | 217/219 | 278/321 | 211/217 | 179/182 | 173 | 195 | 206/212 | 234/242 | 271/277 |
3 | 127 | 167 | 115 | 217/225 | 278/322 | 213/215 | 179/185 | 177 | 195/200 | 206/215 | 236/240 | 271/283 |
4 | 127/131 | 167/171 | 115/129 | 217/227 | 278/323 | 215 | 182/185 | 181 | 200 | 206/221 | ||
5 | 129 | 167/173 | 117/129 | 217/231 | 307/321 | 215/217 | 185 | |||||
6 | 129/131 | 169/171 | 121/129 | 217/235 | 307/322 | 217 | ||||||
7 | 129/133 | 171 | 123/129 | 219/235 | 307/323 | |||||||
8 | 129/135 | 171/173 | 123/133 | |||||||||
9 | 131/133 | 171/175 | ||||||||||
A | 133 | |||||||||||
B | 133/135 |
No. | Molecular identity code | No. | Molecular identity code |
---|---|---|---|
SJ-01 | 192315514322 | SJ-12 | 393121414432 |
SJ-02 | 291315514322 | SJ-13 | 485225334121 |
SJ-03 | 122516514322 | SJ-14 | 546224111121 |
SJ-04 | 897336114322 | SJ-15 | 545254111121 |
SJ-05 | 975265414113 | SJ-16 | 646254114121 |
SJ-06 | 913235513113 | SJ-17 | 353661513121 |
SJ-07 | A73135522123 | SJ-18 | 445664323113 |
SJ-08 | A35165424121 | SJ-19 | 934175513111 |
SJ-09 | 973663214212 | SJ-20 | 563424544123 |
SJ-10 | 972646514212 | SJ-21 | 748772514411 |
SJ-11 | B61664544212 |
Table 6 Molecular identity code of 21 new Camellia hybrid varieties
No. | Molecular identity code | No. | Molecular identity code |
---|---|---|---|
SJ-01 | 192315514322 | SJ-12 | 393121414432 |
SJ-02 | 291315514322 | SJ-13 | 485225334121 |
SJ-03 | 122516514322 | SJ-14 | 546224111121 |
SJ-04 | 897336114322 | SJ-15 | 545254111121 |
SJ-05 | 975265414113 | SJ-16 | 646254114121 |
SJ-06 | 913235513113 | SJ-17 | 353661513121 |
SJ-07 | A73135522123 | SJ-18 | 445664323113 |
SJ-08 | A35165424121 | SJ-19 | 934175513111 |
SJ-09 | 973663214212 | SJ-20 | 563424544123 |
SJ-10 | 972646514212 | SJ-21 | 748772514411 |
SJ-11 | B61664544212 |
1 | 陈赢男, 张新叶, 戴晓港 ( 2014). 利用微卫星标记鉴别油茶品种. 经济林研究 32(4), 140-143. |
2 |
陈雨, 潘大建, 曲延英, 范芝兰, 陈建酉, 李晨 ( 2008). 广东高州7个普通野生稻居群遗传结构的SSR分析. 植物学报 25, 430-436.
DOI URL |
3 | 段云裳, 姜燕华, 王丽鸳, 成浩, 房婉萍, 黎星辉 ( 2011). 我国茶树主要骨干亲本及其衍生品种(系)的SSR分析. 植物遗传资源学报 12, 533-538. |
4 | 高继银, 刘信凯, 赵强民 (2016). 四季茶花杂交新品种彩色图集.杭州: 浙江科学技术出版社. pp. 26-36. |
5 |
郭琪, 郭大龙, 郭丽丽, 张琳, 侯小改 ( 2015). SSR分子标记在牡丹亲缘关系研究中的应用与研究进展. 植物学报 50, 652-664.
DOI URL |
6 |
胡兴华, 王燕, 邹玲俐, 黄仕训 ( 2013). 茶花品种SSR指纹图谱分型技术反应体系优化. 中国农学通报 29, 127-131.
DOI URL |
7 |
李琳琳, 黄万坚, 刘信凯, 高继银, 李凯凯, 叶创兴, 石祥刚 ( 2014). 应用SSR分子标记技术鉴定张氏红山茶杂交F1代真实性的研究. 广东园林 36(2), 44-47.
DOI URL |
8 |
李汝玉, 李群, 张文兰, 张晗, 宋国安, 王东建 ( 2007). 利用SSR标记进行小麦品种鉴定和新品种保护研究. 山东农业科学 ( 6), 14-17.
DOI URL |
9 | 李艳梅 ( 2016). 花开大理四会同办——2016大理国际茶花大会召开. 中国花卉园艺 ( 5), 36-38. |
10 |
刘振, 王新超, 赵丽萍, 姚明哲, 王平盛, 许玫, 唐一春, 陈亮 ( 2008). 基于EST-SSR的西南茶区茶树资源遗传多样性和亲缘关系分析. 分子植物育种 6, 100-110.
DOI URL |
11 | 闵天禄 (2000). 世界山茶属的研究. 昆明: 云南科技出版社. pp. 1-35. |
12 |
邱杨, 李锡香, 李清霞, 陈亦辰, 沈镝, 王海平, 宋江萍 ( 2014). 利用SSR标记构建萝卜种质资源分子身份证. 植物遗传资源学报 15, 648-654.
DOI URL |
13 | 邵阳, 范文, 黄连冬, 高继银, 李昕骥, 张文驹 ( 2015). 基于RNA-seq的崇左金花茶EST-SSR标记开发. 复旦学报(自然科学版) 54, 761-767. |
14 |
申屠文月, 陈析丰, 马伯军 ( 2006). 3个山茶花变异品种的形态鉴定和RAPD分析. 浙江师范大学学报(自然科学版) 29, 317-321.
DOI URL |
15 | 徐雷锋, 葛亮, 袁素霞, 任君芳, 袁迎迎, 李雅男, 刘春, 明军 ( 2014). 利用荧光标记SSR构建百合种质资源分子身份证. 园艺学报 41, 2055-2064. |
16 |
张冰清, 陆徐忠, 吴新杰, 李莉, 陈凤祥, 马琳, 张小娟, 倪金龙, 汪秀峰, 秦瑞英, 杨剑波 ( 2014). 利用SSR标记进行杂交油菜品种鉴定. 中国油料作物学报 36, 728-734.
DOI URL |
17 |
张嘉, 刘爱青, 张淑玲, 解莹然, 刘燕 ( 2016). 利用荧光标记SSR绘制中国芍药品种分子身份证. 北京林业大学学报 38(6), 101-109.
DOI URL |
18 |
张景荣, 刘军 ( 2006). 名贵茶花种质资源的RAPD分析. 西北植物学报 26, 683-687.
DOI URL |
19 | 张晓庆 ( 2008). 中国茶花品种分类、测试指南及已知品种数据库构建. 硕士论文. 北京: 中国林业科学研究院. pp. 33-89. |
20 |
张亚利, 宋垚, 奉树成 ( 2016). SSR分子标记在山茶属观赏资源遗传多样性研究中的应用. 植物科学学报 34, 755-764.
DOI URL |
21 | 中国国家林业局 ( 2000). 中华人民共和国林业植物新品种保护名录(第一批). 科技与法律 ( 1), 150. |
22 | 周文才, 温强, 杨军, 王建文, 徐立安, 徐林初 ( 2017). 油茶栽培品种SSR指纹图谱构建及聚类分析. 分子植物育种 15, 238-249. |
23 | Bartholomew B ( 1980). Corrigenda to the origin and classification of the garden varieties of Camellia reticulata.American Camellia Yearbook 35, 1-29. |
24 | Chen ZY, Jiang YS, Wang ZF, Wei JQ, Wei X, Tang H, Li ZC ( 2010). Development and characterization of microsatellite markers for Camellia nitidissima.Conserv Genet 11, 1163-1165. |
25 |
Cipriani G, Marrazzo MT, Marconi R, Cimato A, Testolin R ( 2002). Microsatellite markers isolated in olive ( Olea europaea L.) are suitable for individual fingerprinting and reveal polymorphism within ancient cultivars.Theor Appl Genet 104, 223-228.
DOI URL PMID |
26 | Doyle JJ, Doyle JL ( 1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19, 11-15. |
27 |
Freeman S, West J, James C, Lea V, Mayes S ( 2004). Isolation and characterization of highly polymorphic microsatellites in tea ( Camellia sinensis).Mol Ecol Notes 4, 324-326.
DOI URL |
28 |
Gianfranceschi L, Seglias N, Tarchini R, Komjanc M, Gessler C ( 1998). Simple sequence repeats for the ge- netic analysis of apple. Theor Appl Genet 96, 1069-1076.
DOI URL |
29 |
Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK ( 2011). Microsatellite markers: an overview of the recent progress in plants. Euphytica 177, 309-334.
DOI URL |
30 |
Kaundun SS, Matusmoto S ( 2002). Heterologous nuclear and chloroplast microsatellite amplification and variation in tea, Camellia sinensis.Genome 45, 1041-1048.
DOI URL PMID |
31 |
Liufu YQ, Peng GQ, Lu YB, Ye QQ, Tang SQ ( 2014). De- velopment and characterization of 38 microsatellite markers for Camellia flavida based on transcriptome sequen-cing.Conserv Genet Resour 6, 1007-1010.
DOI URL |
32 |
Nei M ( 1973). Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70, 3321-3323.
DOI URL PMID |
33 |
Powell W, Machray GC, Provan J ( 1996 a). Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1, 215-222.
DOI URL |
34 | Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A ( 1996 b). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2, 225-238. |
35 |
Rongwen J, Akkaya MS, Bhagwat AA, Lavi U, Cregan PB ( 1995). The use of microsatellite DNA markers for soybean genotype identification. Theor Appl Genet 90, 43-48.
DOI URL PMID |
36 | Wendel JF, Parks CR ( 1983). Cultivar identification in Camellia japonica L.using allozyme polymorphisms. J Amer Soc Hort Sci 108, 290-295. |
37 | Xu J, Huang LD, Xu Y, Zhang WJ ( 2009). Identifying hybrids of golden Camellia using SSR molecular markers.J Fudan Univ (Nat Sci) 48, 668-673. |
38 | Yeh FC, Yang RC, Boyle T, Ye ZH, Mao JX ( 1999). POPGENE, Version 1.32: the user friendly software for population genetic analysis. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||