Chinese Bulletin of Botany ›› 2018, Vol. 53 ›› Issue (1): 27-41.DOI: 10.11983/CBB17041
• RESEARCH ARTICLE • Previous Articles Next Articles
Muqier Hasi1,2, Xueyao Zhang1,2, Guoxiang Niu1,2, Yinliu Wang1,2, Jianhui Huang1,*()
Received:
2017-03-09
Accepted:
2017-05-08
Online:
2018-01-01
Published:
2018-08-10
Contact:
Jianhui Huang
Muqier Hasi, Xueyao Zhang, Guoxiang Niu, Yinliu Wang, Jianhui Huang. Effects of Nitrogen Addition on Ecosystem CO2 Exchange in a Meadow Steppe, Inner Mongolia[J]. Chinese Bulletin of Botany, 2018, 53(1): 27-41.
N addition rates (g N·m-2·a-1) | θν | Ts | NEE | ER | GEP | |
---|---|---|---|---|---|---|
Urea | 0 | 11.48a±0.74 | 17.94a±0.66 | -2.98a±0.38 | 3.85ab±0.12 | 6.81ab±0.48 |
5 | 12.79a±0.97 | 17.69a±0.76 | -3.13a±0.49 | 3.35a±0.22 | 6.48a±0.31 | |
10 | 12.29a±0.61 | 17.66a±0.32 | -3.77a±0.32 | 4.10ab±0.42 | 7.88b±0.29 | |
20 | 13.79a±0.47 | 17.71a±0.49 | -3.82a±0.27 | 4.23ab±0.23 | 8.05b±0.19 | |
50 | 13.41a±0.71 | 17.22a±0.22 | -2.88a±0.44 | 4.59b±0.33 | 7.48ab±0.61 | |
Slow-release urea | 0 | 11.48a±0.74 | 17.94a±0.66 | -2.98b±0.38 | 3.85a±0.12 | 6.81a±0.48 |
5 | 12.01a±0.74 | 18.07a±0.35 | -3.77ab±0.32 | 3.81a±0.25 | 7.58a±0.19 | |
10 | 12.51a±0.55 | 17.72a±0.35 | -4.80a±0.39 | 4.29a±0.32 | 9.10b±0.39 | |
20 | 14.49a±1.28 | 17.06a±0.27 | -3.15b±0.46 | 4.19a±0.37 | 7.34a±0.23 | |
50 | 14.26a±0.82 | 17.44a±0.42 | -2.93b±0.54 | 4.55a±0.27 | 7.47a±0.40 |
Table 1 Means of growing season soil temperature, soil moisture, net ecosystem CO2 exchange, ecosystem respiration and gross ecosystem photosynthesis under different nitrogen addition rates
N addition rates (g N·m-2·a-1) | θν | Ts | NEE | ER | GEP | |
---|---|---|---|---|---|---|
Urea | 0 | 11.48a±0.74 | 17.94a±0.66 | -2.98a±0.38 | 3.85ab±0.12 | 6.81ab±0.48 |
5 | 12.79a±0.97 | 17.69a±0.76 | -3.13a±0.49 | 3.35a±0.22 | 6.48a±0.31 | |
10 | 12.29a±0.61 | 17.66a±0.32 | -3.77a±0.32 | 4.10ab±0.42 | 7.88b±0.29 | |
20 | 13.79a±0.47 | 17.71a±0.49 | -3.82a±0.27 | 4.23ab±0.23 | 8.05b±0.19 | |
50 | 13.41a±0.71 | 17.22a±0.22 | -2.88a±0.44 | 4.59b±0.33 | 7.48ab±0.61 | |
Slow-release urea | 0 | 11.48a±0.74 | 17.94a±0.66 | -2.98b±0.38 | 3.85a±0.12 | 6.81a±0.48 |
5 | 12.01a±0.74 | 18.07a±0.35 | -3.77ab±0.32 | 3.81a±0.25 | 7.58a±0.19 | |
10 | 12.51a±0.55 | 17.72a±0.35 | -4.80a±0.39 | 4.29a±0.32 | 9.10b±0.39 | |
20 | 14.49a±1.28 | 17.06a±0.27 | -3.15b±0.46 | 4.19a±0.37 | 7.34a±0.23 | |
50 | 14.26a±0.82 | 17.44a±0.42 | -2.93b±0.54 | 4.55a±0.27 | 7.47a±0.40 |
θν | Ts | NEE | ER | GEP | ||
---|---|---|---|---|---|---|
Urea | Time | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
N | 0.22 | 0.91 | 0.29 | 0.08 | 0.07 | |
Time×N | 0.66 | 0.56 | 0.01 | 0.01 | 0.03 | |
Slow-release urea | Time | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
SN | 0.38 | 0.49 | 0.04 | 0.34 | 0.01 | |
Time×SN | 0.63 | 0.74 | 0.003 | 0.15 | 0.002 |
Table 2 Results (P-values) of repeated-measures ANOVA on the effects of sampling time, N addition (urea and slow-release urea), and their interactions on soil temperature, soil moisture, net ecosystem CO2 exchange, ecosystem respiration and gross ecosystem photosynthesis during the growing season
θν | Ts | NEE | ER | GEP | ||
---|---|---|---|---|---|---|
Urea | Time | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
N | 0.22 | 0.91 | 0.29 | 0.08 | 0.07 | |
Time×N | 0.66 | 0.56 | 0.01 | 0.01 | 0.03 | |
Slow-release urea | Time | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
SN | 0.38 | 0.49 | 0.04 | 0.34 | 0.01 | |
Time×SN | 0.63 | 0.74 | 0.003 | 0.15 | 0.002 |
Figure 2 Seasonal dynamics of soil NH4+-N and NO3--N at 0-10 cm depth(A), (B) Addition with urea; (C), (D) Addition with slow-release urea. In-set figures showed mean soil inorganic N contents with addition of N (means±SE, n=4). Different lowercase letters among columns indicate significant differences among treatments (P<0.05).
Figure 3 Seasonal means of pH at 0-10 cm soil (means±SE, n=4)(A) Addition with urea; (B) Addition with slow-release urea. Different lowercase letters among columns indicate significant differences among treatments (P<0.05).
N addition rates (g N·m-2·a-1) | ANPP | GB | FB | BGB | |
---|---|---|---|---|---|
Urea | 0 | 142.52a±16.85 | 96.86a±19.68 | 42.37a±13.05 | 1718.44a±172.36 |
5 | 157.74a±5.51 | 129.37a±11.10 | 24.33a±8.48 | 1575.31a±64.48 | |
10 | 216.29a±23.24 | 190.59a±19.71 | 24.07a±5.09 | 1941.26ab±226.12 | |
20 | 167.54a±21.06 | 125.55a±38.81 | 37.01a±16.07 | 2320.85b±99.68 | |
50 | 191.38a±40.72 | 182.04a±42.34 | 10.26a±3.16 | 1915.27ab±74.55 | |
Slow-release urea | 0 | 142.52a±16.85 | 96.86a±19.68 | 42.37a±13.05 | 1718.44a±172.36 |
5 | 166.24ab±11.86 | 129.16ab±10.48 | 28.49a±3.39 | 1632.48a±67.81 | |
10 | 238.34bc±35.71 | 188.39bc±45.45 | 50.16a±25.57 | 2127.48b±111.51 | |
20 | 261.06c±26.01 | 220.86c±19.61 | 40.48a±7.82 | 1942.56ab±123.40 | |
50 | 254.41c±24.63 | 227.08c±16.94 | 31.36a±16.22 | 1750.71ab±105.22 |
Table 3 Aboveground net primary productivity, grasses aboveground biomass, forb aboveground biomass and total belowground biomass under different nitrogen addition rates (means±SE, n=4)
N addition rates (g N·m-2·a-1) | ANPP | GB | FB | BGB | |
---|---|---|---|---|---|
Urea | 0 | 142.52a±16.85 | 96.86a±19.68 | 42.37a±13.05 | 1718.44a±172.36 |
5 | 157.74a±5.51 | 129.37a±11.10 | 24.33a±8.48 | 1575.31a±64.48 | |
10 | 216.29a±23.24 | 190.59a±19.71 | 24.07a±5.09 | 1941.26ab±226.12 | |
20 | 167.54a±21.06 | 125.55a±38.81 | 37.01a±16.07 | 2320.85b±99.68 | |
50 | 191.38a±40.72 | 182.04a±42.34 | 10.26a±3.16 | 1915.27ab±74.55 | |
Slow-release urea | 0 | 142.52a±16.85 | 96.86a±19.68 | 42.37a±13.05 | 1718.44a±172.36 |
5 | 166.24ab±11.86 | 129.16ab±10.48 | 28.49a±3.39 | 1632.48a±67.81 | |
10 | 238.34bc±35.71 | 188.39bc±45.45 | 50.16a±25.57 | 2127.48b±111.51 | |
20 | 261.06c±26.01 | 220.86c±19.61 | 40.48a±7.82 | 1942.56ab±123.40 | |
50 | 254.41c±24.63 | 227.08c±16.94 | 31.36a±16.22 | 1750.71ab±105.22 |
Figure 4 Seasonal variations in net ecosystem CO2 exchange, ecosystem respiration and gross ecosystem photosynthesis under different nitrogen addition rates (means±SE)(A)-(C) Addition with urea; (D)-(F) Addition with slow-release urea. NEE, ER and GEP see Table 1.
Figure 5 Seasonal patterns of net ecosystem CO2 exchange, ecosystem respiration and gross ecosystem photosynthesis at different nitrogen addition rates with urea in each month (means±SE, n=4)NEE, ER and GEP see Table 1. Different lowercase letters among columns indicate significant differences among treatments (P<0.05).
Figure 6 Seasonal patterns of net ecosystem CO2 exchange, ecosystem respiration and gross ecosystem photosynthesis at different nitrogen addition rates with slow-release urea in each month (means±SE, n=4) NEE, ER and GEP see Table 1. Different lowercase letters among columns indicate significant differences among treatments (P<0.05).
Figure 7 Relationships of net ecosystem CO2 exchange, ecosystem respiration or gross ecosystem photosynthesis with 0-10 cm soil temperature(A)-(C) Addition with urea; (D)-(F) Addition with slow-release urea. NEE, ER and GEP see Table 1.
Figure 8 Relationships of net ecosystem CO2 exchange, ecosystem respiration or gross ecosystem photosynthesis with 0-10 cm soil moisture(A)-(C) Addition with urea; (D)-(F) Addition with slow-release urea. NEE, ER and GEP see Table 1.
Figure 9 Relationships of net ecosystem CO2 exchange, ecosystem respiration or gross ecosystem photosynthesis with belowground biomass(A)-(C) Addition with urea; (D)-(F) Addition with slow-release urea. NEE, ER and GEP see Table 1.
N addition rates (g N·m-2·a-1) | ER | GEP | |
---|---|---|---|
Urea | 0 | 0.72a±0.09 | 1.86a±0.64 |
5 | 0.95a±0.16 | 3.23ab±0.62 | |
10 | 0.59a±0.15 | 3.72ab±0.71 | |
20 | 0.76a±0.19 | 3.67ab±1.35 | |
50 | 0.74a±0.09 | 4.54b±0.34 | |
Slow-release urea | 0 | 0.72a±0.09 | 1.86a±0.64 |
5 | 0.89a±0.14 | 4.21b±0.16 | |
10 | 1.43b±0.27 | 5.86c±0.61 | |
20 | 0.69a±0.12 | 3.46b±0.62 | |
50 | 0.92a±0.12 | 4.99bc±0.36 |
Table 4 Sensitivity of ecosystem respiration (ER) and gross ecosystem photosynthesis (GEP) to soil moisture under different nitrogen addition rates (means±SE, n=4)
N addition rates (g N·m-2·a-1) | ER | GEP | |
---|---|---|---|
Urea | 0 | 0.72a±0.09 | 1.86a±0.64 |
5 | 0.95a±0.16 | 3.23ab±0.62 | |
10 | 0.59a±0.15 | 3.72ab±0.71 | |
20 | 0.76a±0.19 | 3.67ab±1.35 | |
50 | 0.74a±0.09 | 4.54b±0.34 | |
Slow-release urea | 0 | 0.72a±0.09 | 1.86a±0.64 |
5 | 0.89a±0.14 | 4.21b±0.16 | |
10 | 1.43b±0.27 | 5.86c±0.61 | |
20 | 0.69a±0.12 | 3.46b±0.62 | |
50 | 0.92a±0.12 | 4.99bc±0.36 |
[1] | 陈德明, 王亭杰, 雨山江, 金涌 (2002). 缓释和控释尿素的研究与开发综述. 化工进展 21, 455-461. |
[2] | 陈佐忠, 汪诗平 (2000).中国典型草原生态系统. 北京: 科学出版社. |
[3] | 顾峰雪, 于贵瑞, 温学发, 陶波, 李克让, 刘允芬 (2008). 干旱对亚热带人工针叶林碳交换的影响. 植物生态学报 32, 1041-1051. |
[4] | 吴平霄, 廖宗文, 毛小云 (2000). 改性尿素的肥效及淋溶特性研究初探. 土壤与环境 9, 75-76. |
[5] | 游成铭, 胡中民, 郭群, 干友民, 李凌浩, 白文明, 李胜功 (2016). 氮添加对内蒙古温带典型草原生态系统碳交换的影响. 生态学报 36, 2142-2150. |
[6] | 张丽华, 宋长春, 王德宣 (2006). 氮输入对沼泽湿地碳平衡的影响. 环境科学 27, 1257-1263. |
[7] | Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998). Nitrogen saturation in temperate forest ecosy- stems: hypotheses revisited.Bioscience 48, 921-934. |
[8] | Aires LMI, Pio CA, Pereira JS (2008). Carbon dioxide exchange above a Mediterranean C3/C4 grassland during two climatologically contrasting years.Global Change Biol 14, 539-555. |
[9] | Arens SJT, Sullivan PF, Welker JM (2008). Nonlinear responses to nitrogen and strong interactions with nitrogen and phosphorus additions drastically alter the structure and function of a high arctic ecosystem. J Geophys Res 113, G03S09. |
[10] | Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG (2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and eco- system functioning: evidence from inner Mongolia grass- lands.Global Change Biol 16, 358-372. |
[11] | Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG (2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau.Ecology 89, 2140-2153. |
[12] | Bubier JL, Moore TR, Bledzki LA (2007). Effects of nutrient addition on vegetation and carbon cycling in an ombrotro- phic bog.Global Change Biol 13, 1168-1186. |
[13] | Chen SP, Lin GH, Huang JH, Jenerette GD (2009). Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe.Global Change Biol 15, 2450-2461. |
[14] | Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phospho- rus limitation of primary producers in freshwater, marine and terrestrial ecosystems.Ecol Lett 10, 1135-1142. |
[15] | Gruber N, Galloway JN (2008). An earth-system perspec- tive of the global nitrogen cycle.Nature 451, 293-296. |
[16] | Harpole WS, Potts DL, Suding KN (2007). Ecosystem responses to water and nitrogen amendment in a Cali- fornia grassland.Global Change Biol 13, 2341-2348. |
[17] | Hooper DU, Johnson L (1999). Nitrogen limitation in dryland ecosystems: responses to geographical and temporal va- riation in precipitation.Biogeochemistry 46, 247-293. |
[18] | Huxman TE, Smith MD, Fay PA, Knapp AK, Shaw MR, Loik ME, Smith SD, Tissue DT, Zak JC, Weltzin JF, Pockman WT, Sala OE, Haddad BM, Harte J, Koch GW, Schwinning S, Small EE, Williams DG (2004). Conver- gence across biomes to a common rain-use efficiency.Nature 429, 651-654. |
[19] | Hyvönen R, Agren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Strömgren M, van Oijen M, Wallin G (2007). The likely impact of elevated [CO2], nitrogen deposition, in- creased temperature and management on carbon seq- uestration in temperate and boreal forest ecosystems: a literature review.New Phytol 173, 463-480. |
[20] | Jasoni RL, Smith SD, Arnone JA (2005). Net ecosystem CO2 exchange in Mojave desert shrublands during the eighth year of exposure to elevated CO2.Global Change Biol 11, 749-756. |
[21] | Kwon H, Pendall E, Ewers BE, Cleary M, Naithani K (2008). Spring drought regulates summer net ecosystem CO2 exchange in a sagebrush-steppe ecosystem.Agric Forest Meteor 148, 381-391. |
[22] | LeBauer DS, Treseder KK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed.Ecology 89, 371-379. |
[23] | Lü FM, Lü XT, Liu W, Han X, Zhang GM, Kong DL, Han XG (2011). Carbon and nitrogen storage in plant and soil as related to nitrogen and water amendment in a temperate steppe of northern China.Biol Fertility Soils 47, 187-196. |
[24] | Niu SL, Wu MY, Han YI, Xia JY, Li LH, Wan SQ (2008). Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe.New Phytol 177, 209-219. |
[25] | Niu SL, Wu MY, Han YI, Xia JY, Zhang ZHE, Yang HJ, Wan SQ (2010). Nitrogen effects on net ecosystem carbon exchange in a temperate steppe.Global Change Biol 16, 144-155. |
[26] | Niu SL, Yang HJ, Zhang Z, Wu MY, Lu Q, Li LH, Han XG, Wan SQ (2009). Non-additive effects of water and nitrogen addition on ecosystem carbon exchange in a temperate steppe.Ecosystems 12, 915-926. |
[27] | Patrick L, Cable J, Potts D, lgnace D, Barron-Gafford G, Griffith A, Alpert H, Van Gestel N, Robertson T, Huxman TE, Zak J, Loik ME, Tissue D (2007). Effects of an increase in summer precipitation on leaf, soil, and ecosystem fluxes of CO2 and H2O in a sotol grassland in Big Bend National Park, Texas.Oecologia 151, 704-718. |
[28] | Pepper DA, Del Grosso SJ, McMurtrie RE, Parton WJ (2005). Simulated carbon sink response of shortgrass steppe, tallgrass prairie and forest ecosystems to rising [CO2], temperature and nitrogen input. Global Biogeochem Cycl 19, GB1004. |
[29] | Saarnio S, Järviö S, Saarinen T, Vasander H, Silvola J (2003). Minor changes in vegetation and carbon gas balance in a boreal mire under a raised CO2 or NH4NO3 supply.Ecosystems 6, 46-60. |
[30] | Seagle SW, McNaughton SJ (1993). Simulated effects of precipitation and nitrogen on serengeti grassland produc- tivity.Biogeochemistry 22, 157-178. |
[31] | Shaver GR, Johnson LC, Cades DH, Murray G, Laundre JA, Rastetter EB, Nadelhoffer KJ, Giblin AE (1998). Biomass and CO2 flux in wet sedge tundras: responses to nutrients, temperature, and light.Ecol Monogr 68, 75-97. |
[32] | Tian DS, Niu SL, Pan QM, Ren TT, Chen SP, Bai YF, Han XG (2016). Nonlinear responses of ecosystem carbon fluxes and water-use efficiency to nitrogen addition in Inner Mongolia grassland.Funct Ecol 30, 490-499. |
[33] | Tilman D, Fargione J, Wolff B, D`Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simeberloff D, Swackhamer D (2001). Forecasting agriculturally driven global environmental change.Science 292, 281-284. |
[34] | Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman D (1997). Human alteration of the global nitrogen cycle: sources and consequences.Ecol Appl 7, 737-750. |
[35] | Vose JM, Elliott KJ, Johnson DW, Tingey DT, Johnson MG (1997). Soil respiration response to three years of elevated CO2 and N fertilization in ponderosa pine ( Pinus ponderosa Dong. ex Laws.). Plant Soil 190, 19-28. |
[36] | Wang LX, D'odorico P, O'halloran LR, Caylor K, Macko S (2010). Combined effects of soil moisture and nitrogen availability variations on grass productivity in African sa- vannas.Plant Soil 328, 95-108. |
[37] | Xia JY, Niu SL, Wan SQ (2009). Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a tem- perate steppe.Global Change Biol 15, 1544-1556. |
[38] | Xia JY, Wan SQ (2008). Global response patterns of terr- estrial plant species to nitrogen addition.New Phytol 179, 428-439. |
[39] | Yan LM, Chen SP, Huang JH, Lin GH (2010). Differential responses of auto- and heterotrophic soil respiration to water and nitrogen addition in a semiarid temperate step- pe.Global Change Biol 16, 2345-2357. |
[40] | Yan LM, Chen SP, Huang JH, Lin GH (2011). Increasing water and nitrogen availability enhanced net ecosystem CO2 assimilation of a temperate semiarid steppe.Plant Soil 349, 227-240. |
[41] | Zhang XL, Tan YL, Li A, Ren TT, Chen SP, Wang LX, Huang JH (2015). Water and nitrogen availability co- control ecosystem CO2 exchange in a semiarid temperate steppe.Sci Rep 5, 15549. |
[1] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[2] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[3] | YAN Chen-Yi, GONG Ji-Rui, ZHANG Si-Qi, ZHANG Wei-Yuan, DONG Xue-De, HU Yu-Xia, YANG Gui-Sen. Effects of nitrogen addition on soil active organic carbon in a temperate grassland of Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(2): 229-241. |
[4] | SHU Wei-Wei, YANG Kun, MA Jun-Xu, MIN Hui-Lin, CHEN Lin, LIU Shi-Ling, HUANG Ri-Yi, MING An-Gang, MING Cai-Dao, TIAN Zu-Wei. Effects of nitrogen addition on the morphological and chemical traits of fine roots with different orders of Castanopsis hystrix [J]. Chin J Plant Ecol, 2024, 48(1): 103-112. |
[5] | Yongjie Niu, Quanhui Ma, Yu Zhu, Hairong Liu, Jiale Lü, Yuanchun Zou, Ming Jiang. Research progress on the impact of nitrogen deposition on grassland insect diversity [J]. Biodiv Sci, 2023, 31(9): 23130-. |
[6] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[7] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[8] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[9] | LUO Lai-Cong, LAI Xiao-Qin, BAI Jian, LI Ai-Xin, FANG Hai-Fu, Nasir SHAD, TANG Ming, HU Dong-Nan, ZHANG Ling. Effects of soil bacteria and fungi on growth of invasive plant Triadica sebifera with different provenances under nitrogen addition [J]. Chin J Plant Ecol, 2023, 47(2): 206-215. |
[10] | AN Fan, LI Bao-Yin, ZHONG Quan-Lin, CHENG Dong-Liang, XU Chao-Bin, ZOU Yu-Xing, ZHANG Xue, DENG Xing-Yu, LIN Qiu-Yan. Nitrogen addition affects growth and functional traits of Machilus pauhoi seedlings from different provenances [J]. Chin J Plant Ecol, 2023, 47(12): 1693-1707. |
[11] | GE Ping, LI Ang, WANG Yin-Liu, JIANG Liang-Chao, NIU Guo-Xiang, HASI Muqi’er, WANG Yan-Bing, XUE Jian-Guo, ZHAO Wei, HUANG Jian-Hui. Nonlinear response of greenhouse gases emission to nitrogen addition in a meadow steppe [J]. Chin J Plant Ecol, 2023, 47(11): 1483-1492. |
[12] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[13] | XIE Huan, ZHANG Qiu-Fang, CHEN Ting-Ting, ZENG Quan-Xin, ZHOU Jia-Cong, WU Yue, LIN Hui-Ying, LIU Yuan-Yuan, YIN Yun-Feng, CHEN Yue-Min. Interaction of soil arbuscular mycorrhizal fungi and plant roots acts on maintaining soil phosphorus availability under nitrogen addition [J]. Chin J Plant Ecol, 2022, 46(7): 811-822. |
[14] | MA Ju-Feng, XIN Min, XU Chen-Chao, ZHU Wan-Ying, MAO Chuan-Zao, CHEN Xin, CHENG Lei. Effects of arbuscular mycorrhizal fungi and nitrogen addition on nitrogen uptake of rice genotypes with different root morphologies [J]. Chin J Plant Ecol, 2021, 45(7): 728-737. |
[15] | YANG Jian-Qiang, DIAO Hua-Jie, HU Shu-Ya, WANG Chang-Hui. Effects of nitrogen addition at different levels on soil microorganisms in saline-alkaline grassland of northern China [J]. Chin J Plant Ecol, 2021, 45(7): 780-789. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||