[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
专题论坛

基于FRET原理的生物传感器:小分子荧光探针在植物中的研究进展

展开
  • 首都师范大学生命科学学院, 北京 100048


收稿日期: 2024-04-15

  修回日期: 2024-09-18

  网络出版日期: 2024-10-16

基金资助

极性细胞自律钙波动信号编码器(CaCs-CMs)的分离、识别与功能解析

FRET-based Biosensors: Application of Small Molecule Fluorescence Probes in Plants

Expand
  • College of Life Science, Capital Normal University, Beijing 100048

Received date: 2024-04-15

  Revised date: 2024-09-18

  Online published: 2024-10-16

摘要

生物小分子是指生物体内分子量较小的单体物质,植物小分子种类繁多,包括离子、激素、信号分子和代谢物等。了解植物体内这些小分子的动态变化,有助于解析相关的生理功能和网络调控,也为植物细胞学的精确观察创造了新的机遇。基于F?rster共振能量转移(FRET)原理设计的基因编码荧光生物传感器/探针,为研究人员在活体内观察这些小分子的动态变化提供了有力的工具,依赖FRET传感器/探针可将细胞内特异小分子化合物的浓度可视化,并以实时动态的方式获取高分辨率图像信息,基于这些优势和特点,该技术已广泛应用于不同领域的研究,包括植物生理学、发育生物学和环境科学等。在本综述中,我们总结了最近植物学研究中使用的FRET传感器/探针,概述了它们的主要设计原理及思路,并阐述了它们在营养离子、植物激素及基础代谢物方面的应用和研究进展,为植物中生物小分子的功能研究展示了实用的技术手段和可能的研究方向。

本文引用格式

吕加一, 李乐攻, 侯聪聪 . 基于FRET原理的生物传感器:小分子荧光探针在植物中的研究进展[J]. 植物学报, 0 : 0 -0 . DOI: 10.11983/CBB24056

Abstract

Biological small molecules, also known as monomeric compounds with relatively low molecular weight found in organisms, encompass a wide array of substances in plants, such as ions, plant hormones and metabolites. Studying the dynamic fluctuations of these small molecules in plants is crucial for analyzing their corresponding physiological functions, regulatory networks, and enhancing the precision of botanical research. Genetically encoded fluorescent biosensors/probes utilizing Förster resonance energy transfer (FRET) technology serve as valuable tools for real-time monitoring of these small molecules within living organisms. These FRET biosensors/probes allow for the non-invasive visualization of specific small molecule concentrations, providing detailed information at a high resolution. Because of these unique advantages, this technique has been extensively applied in various research fields, including plant physiology, developmental biology, and environmental science. This review provides a comprehensive overview of FRET sensors/probes utilized in plant research in recent years, outlines the key design concepts, and highlights their applications and advances in detecting ions, plant hormones, and metabolites. Furthermore, this review demonstrates practical technological tools and potential research directions for elucidating the functions of small biomolecules in plants.
[an error occurred while processing this directive]

参考文献

Balcerowicz M, Shetty KN, Jones AM (2021). Fluorescent biosensors illuminating plant hormone research. Plant Physiol 187, 590–602.
Behera S, Wang N, Zhang C, Schmitz-Thom I, Strohkamp S, Schültke S, Hashimoto K, Xiong L, Kudla J (2015). Analyses of Ca2+ dynamics using a ubiquitin-10 promoter-driven Yellow Cameleon 3.6 indicator reveal reliable transgene expression and differences in cytoplasmic Ca2+ responses in Arabidopsis and rice (Oryza sativa) roots. New Phytol 206, 751–760.
Bhuckory S, Kays JC, Dennis AM (2019). In Vivo Biosensing Using Resonance Energy Transfer. Biosensors (Basel) 9, 76.
Bhupathi P, Elhassan A-Elgadir TM, Mohammed Ali RH, Sanaan Jabbar H, Gulnoza D, Joshi SK, Kadhem Abid M, Ahmed Said E, Alawadi A, Alsaalamy A(2023). Fluorescence Resonance Energy Transfer (FRET)-Based Sensor for Detection of Foodborne Pathogenic Bacteria: A Review. Crit Rev Anal Chem, 1-18.
Bogner M, Ludewig U(2007). Visualization of arginine influx into plant cells using a specific FRET-sensor. J Fluoresc 17, 350-60.
Chaudhuri B, H?rmann F, Lalonde S, Brady SM, Orlando DA, Benfey P, Frommer WB (2008). Protonophore- and pH-insensitive glucose and sucrose accumulation detected by FRET nanosensors in Arabidopsis root tips. Plant J 56, 948–962.
Chaudhuri B, H?rmann F, Frommer WB (2011). Dynamic imaging of glucose flux impedance using FRET sensors in wild-type Arabidopsis plants. J Exp Bot 62, 2411–2417.
Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, Guo WJ, Kim JG, Underwood W, Chaudhuri B, Chermak D, Antony G, White FF, Somerville SC, Mudgett MB, Frommer WB (2010). Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468, 527–532.
Chen YN, Cartwright HN, Ho CH (2022). In vivo visualization of nitrate dynamics using a genetically encoded fluorescent biosensor. Sci Adv 8, eabq4915.
Davies PJ (2010). The Plant Hormones: Their Nature, Occurrence, and Functions. In: Davies PJ, ed. Plant Hormones: Biosynthesis, Signal Transduction, Action!. Dordrecht: Springer Netherlands. pp. 1–15.
De Col V, Fuchs P, Nietzel T, Els?sser M, Voon CP, Candeo A, Seeliger I, Fricker MD, Grefen C, M?ller IM, Bassi A, Lim BL, Zancani M, Meyer AJ, Costa A, Wagner S, Schwarzl?nder M (2017). ATP sensing in living plant cells reveals tissue gradients and stress dynamics of energy physiology. eLife 6, e26770.
Deuschle K, Chaudhuri B, Okumoto S, Lager I, Lalonde S, Frommer WB (2006). Rapid Metabolism of Glucose Detected with FRET Glucose Nanosensors in Epidermal Cells and Intact Roots of Arabidopsis RNA-Silencing Mutants. Plant Cell 18, 2314–2325.
Ding N, Zhou S, Deng Y(2021). Transcription-Factor-based Biosensor Engineering for Applications in Synthetic Biology. ACS Synth Biol 10, 911-922.
van Dongen EMWM, Evers TH, Dekkers LM, Meijer EW, Klomp LWJ, Merkx M (2007). Variation of linker length in ratiometric fluorescent sensor proteins allows rational tuning of Zn(II) affinity in the picomolar to femtomolar range. J Am Chem Soc 129, 3494–3495.
Fehr M, Frommer WB, Lalonde S (2002). Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proc Natl Acad Sci USA 99, 9846–9851.
Fehr M, Lalonde S, Lager I, Wolff MW, Frommer WB (2003). In Vivo Imaging of the Dynamics of Glucose Uptake in the Cytosol of COS-7 Cells by Fluorescent Nanosensors. J Biol Chem 278, 19127–19133.
F?rster T (1965) Delocalized excitation and excitation transfer, vol 3. New York: Florida State University.
Forde BG, Lea PJ (2007). Glutamate in plants: metabolism, regulation, and signalling. J Exp Bot 58, 2339–2358.
Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY (2001). Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276, 29188–29194.
Gu H, Lalonde S, Okumoto S, Looger LL, Scharff-Poulsen AM, Grossman AR, Kossmann J, Jakobsen I, Frommer WB (2006). A novel analytical method for in vivo phosphate tracking. FEBS Lett 580, 5885–5893.
Hamers D, van Voorst Vader L, Borst JW, Goedhart J (2014). Development of FRET biosensors for mammalian and plant systems. Protoplasma 251, 333-347.
Herud-Sikimi? O, Stiel AC, Kolb M, Shanmugaratnam S, Berendzen KW, Feldhaus C, H?cker B, Jürgens G (2021). A biosensor for the direct visualization of auxin. Nature 592, 768–772.
Hessels AM, Merkx M (2015). Genetically-encoded FRET-based sensors for monitoring Zn2+ in living cells. Metallomics 7, 258–266.
Ho CH, Frommer WB (2014). Fluorescent sensors for activity and regulation of the nitrate transceptor CHL1/NRT1.1 and oligopeptide transporters. eLife 3, e01917.
Imamura H, Huynh Nhat KP, Tokawa H, Saito K, Iino R, Kato-Yamada Y, Nagai T, Noji H (2009). Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci USA 106, 15651–15656.
Jones AM, Danielson JA, Manojkumar SN, Lanquar V, Grossmann G, Frommer WB(2014). Abscisic acid dynamics in roots detected with genetically encoded FRET sensors. eLife 3, e01741.
Jones A, Grossmann G, Danielson J?H, Sosso D, Chen LQ, Ho CH, Frommer WB (2013). In vivo biochemistry: Applications for small molecule biosensors in plant biology. Curr Opin Plant Biol 16, 389–395.
Joseph RL, Lakowicz R (1999) Principles of fluorescence spectroscopy. New York: Kluwer Academic/Plenum Publishers. pp. 11
Krebs M, Held K, Binder A, Hashimoto K, Den Herder G, Parniske M, Kudla J, Schumacher K (2012). FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca2+ dynamics. Plant J 69, 181–192.
Lam HK, McAdam SAM, McAdam EL, Ross JJ (2015). Evidence That Chlorinated Auxin Is Restricted to the Fabaceae But Not to the Fabeae. Plant Physiol 168, 798–803.
Lanquar V, Grossmann G, Vinkenborg JL, Merkx M, Thomine S, Frommer WB (2014). Dynamic imaging of cytosolic zinc in Arabidopsis roots combining FRET sensors and RootChip technology. New Phytol 202, 198–208.
Laube B, Schemm R, Betz H (2004). Molecular determinants of ligand discrimination in the glutamate-binding pocket of the NMDA receptor. Neuropharmacology 47, 994–1007.
Li F, Wang Y, Zhou X (2017). SGS3 Cooperates with RDR6 in Triggering Geminivirus-Induced Gene Silencing and in Suppressing Geminivirus Infection in Nicotiana Benthamiana. Viruses 9, 247.
Michener JK, Thodey K, Liang JC, Smolke CD (2012). Applications of genetically-encoded biosensors for the construction and control of biosynthetic pathways. Metab Eng 14, 212–222.
Mishin AS, Belousov VV, Solntsev KM, Lukyanov KA (2015). Novel uses of fluorescent proteins. Curr Opin Chem Biol 27, 1–9.
Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997). Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887.
Mukherjee P, Banerjee S, Wheeler A, Ratliff LA, Irigoyen S, Garcia LR, Lockless SW, Versaw WK (2015). Live imaging of inorganic phosphate in plants with cellular and subcellular resolution. Plant Physiol 167, 628–638.
Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002). A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20, 87–90.
Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A (2004). Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci USA 101, 10554–10559.
O’Brien JA, Vega A, Bouguyon E, Krouk G, Gojon A, Coruzzi G, Gutiérrez RA (2016). Nitrate Transport, Sensing, and Responses in Plants. Mol Plant 9, 837–856.
Okumoto S, Pilot G (2011). Amino Acid Export in Plants: A Missing Link in Nitrogen Cycling. Mol Plant 4, 453–463.
Rizza A, Walia A, Lanquar V, Frommer WB, Jones AM(2017). In vivo gibberellin gradients visualized in rapidly elongating tissues. Nat Plants 3, 803-813.
Rowe J, Grangé-Guermente M, Exposito-Rodriguez M, Wimalasekera R, Lenz MO, Shetty KN, Cutler SR, Jones AM(2023). Next-generation ABACUS biosensors reveal cellular ABA dynamics driving root growth at low aerial humidity. Nat Plants 9, 1103-1115.
Sami F, Siddiqui H, Hayat S (2019). Interaction of glucose and phytohormone signaling in plants. Plant Physiol and Biochem 135, 119–126.
Shi S, Ang EL, Zhao H (2018). In vivo biosensors: mechanisms, development, and applications. J Ind Microbiol Biotechnol 45, 491–516.
Siddiqui H, Sami F, Hayat S (2020). Glucose: Sweet or bitter effects in plants-a review on current and future perspective. Carbohydr Res 487, 107884.
Sun YJ, Rose J, Wang BC, Hsiao CD (1998). The structure of glutamine-binding protein complexed with glutamine at 1.94 ? resolution: comparisons with other amino acid binding proteins11Edited by R. Huber. J Mol Biol 278, 219–229.
Swanson SJ, Gilroy S (2013). Imaging changes in cytoplasmic calcium using the Yellow Cameleon 3.6 biosensor and confocal microscopy. Methods Mol Biol 1009, 291–302.
Tegeder M, Rentsch D (2010). Uptake and Partitioning of Amino Acids and Peptides. Mol Plant 3, 997–1011.
Turner APF (2013). Biosensors: sense and sensibility. Chem Soc Rev 42, 3184–3196.
Verma AK, Noumani A, Yadav AK, Solanki PR (2023). FRET Based Biosensor: Principle Applications Recent Advances and Challenges. Diagnostics (Basel) 13, 1375.
Vinkenborg JL, Evers TH, Reulen SWA, Meijer EW, Merkx M (2007). Enhanced Sensitivity of FRET-Based Protease Sensors by Redesign of the GFP Dimerization Interface. ChemBioChem 8, 1119–1121.
Vinkenborg JL, Nicolson TJ, Bellomo EA, Koay MS, Rutter GA, Merkx M (2009). Imaging of intracellular free Zn2+ in real time using genetically-encoded FRET sensors. Nat Methods 6, 737–740.
Waadt R, Hitomi K, Nishimura N, Hitomi C, Adams SR, Getzoff ED, Schroeder JI (2014). FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis. eLife 3, e01739.
Walia A, Waadt R, Jones AM (2018). Genetically Encoded Biosensors in Plants: Pathways to Discovery. Annu Rev Plant Biol 69, 497–524.
Wang X, Feng C, Tian L, Hou C, Tian W, Hu B, Zhang Q, Ren Z, Niu Q, Song J, Kong D, Liu L, He Y, Ma L, Chu C, Luan S, Li L (2021). A transceptor-channel complex couples nitrate sensing to calcium signaling in Arabidopsis. Mol Plant 14, 774–786.
Wu Y, Jiang T (2022). Developments in FRET- and BRET-Based Biosensors. Micromachines (Basel) 13, 1789.
Yang H, Bogner M, Stierhof YD, Ludewig U (2010). H+-Independent Glutamine Transport in Plant Root Tips. PLoS One 5, e8917.
Yoshida T, Alfaqaan S, Sasaoka N, Imamura H (2017). Application of FRET-Based Biosensor ‘ATeam’ for Visualization of ATP Levels in the Mitochondrial Matrix of Living Mammalian Cells. Methods Mol Biol 1567, 231–243.
Zhang S, Pan Y, Tian W, Dong M, Zhu H, Luan S, Li L (2017). Arabidopsis CNGC14 Mediates Calcium Influx Required for Tip Growth in Root Hairs. Molecular Plant 10, 1004–1006.
Zhang X, Hu Y, Yang X, Tang Y, Han S, Kang A, Deng H, Chi Y, Zhu D, Lu Y (2019). F?rster resonance energy transfer (FRET)-based biosensors for biological applications. Biosens Bioelectron 138, 111314.
Zhu Q, Wang L, Dong Q, Chang S, Wen K, Jia S, Chu Z, Wang H, Gao P, Zhao H, Han S, Wang Y(2017). FRET-based glucose imaging identifies glucose signalling in response to biotic and abiotic stresses in rice roots. J Plant Physiol 215, 65-72.
文章导航

/

[an error occurred while processing this directive]