[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究报告

甘蓝型油菜转录因子BnaABF2的表征分析及互作蛋白鉴定

  • 杨柳卿 ,
  • 王劲 ,
  • 燕敬利 ,
  • 陈芹芹 ,
  • 程浩坤 ,
  • 李春 ,
  • 赵培玉 ,
  • 杨博 ,
  • 江元清
展开
  • 西北农林科技大学生命科学学院, 杨凌 712100



收稿日期: 2024-02-05

  修回日期: 2024-08-05

  网络出版日期: 2024-08-22

基金资助

国家自然科学基金(No.32171953)

Analysis of Expression Characteristics and Identification of Interaction Proteins of BnaABF2 Transcription Factor in Brassica napus 

  • YANG Liu-Qing ,
  • YU Jin ,
  • YAN Jing-Li ,
  • CHEN Qin-Qin ,
  • CHENG Gao-Kun ,
  • LI Chun ,
  • DIAO Pei-Yu ,
  • YANG Bo ,
  • JIANG Yuan-Qing
Expand
  • College of Life Sciences, Northwest A & F University, Yangling 712100, China

Received date: 2024-02-05

  Revised date: 2024-08-05

  Online published: 2024-08-22

摘要

ABF转录因子是能够特异识别并结合ABA响应元件(ABRE)的碱性亮氨酸拉链蛋白的统称, 参与ABA的信号转导并作为ABA信号转录应答的调节因子。本研究对甘蓝型油菜(Brassica napus) BnaABF2基因编码的蛋白进行了分析。亚细胞定位结果显示, BnaABF2蛋白定位于细胞核中; 酵母系统转录活性分析表明, BnaABF2无转录激活活性; qRT-PCR检测发现, BnaABF2的表达量在叶中最高。我们还发现ABA处理、模拟干旱、盐逆境能够诱导BnaABF2的表达; BiFC结果显示, BnaMPK1/2/6/7/9/12/13能与BnaABF2互作。Dual-LUC结果表明, BnaMPK7可能通过磷酸化增强BnaABF2对下游靶基因的转录调控。本研究初步探索了转录因子基因BnaABF2的基本特性与互作蛋白, 对于理解其功能与机制具有一定的理论指导意义。

本文引用格式

杨柳卿 , 王劲 , 燕敬利 , 陈芹芹 , 程浩坤 , 李春 , 赵培玉 , 杨博 , 江元清 . 甘蓝型油菜转录因子BnaABF2的表征分析及互作蛋白鉴定[J]. 植物学报, 2025 , 60(1) : 0 -0 . DOI: 10.11983/CBB24019

Abstract

ABF transcription factors are collectively referred to as basic leucine zipper proteins that can specifically recognize and bind to ABA-responsive elements (ABREs), participating in ABA signal transduction and serving as regulators of ABA signal transcriptional responses. This study analyzed the protein encoded by the BnaABF2 gene in Brassica napus. Subcellular localization results showed that the BnaABF2 protein is localized in the nucleus. Analysis of transcriptional activity in the yeast system indicated that BnaABF2 has no transcriptional activation activity. qRT-PCR detection revealed that the expression level of BnaABF2 is highest in leaves. We also found that ABA treatment, simulated drought, and salt stress can induce the expression of BnaABF2. BiFC results showed that BnaMPK1/2/6/7/9/12/13 can interact with BnaABF2. Dual-LUC results suggested that BnaMPK7 may enhance the transcriptional regulation of BnaABF2 on downstream target genes through phosphorylation. This study initially explored the basic characteristics and interacting proteins of the transcription factor gene BnaABF2, providing theoretical guidance for understanding its functions and mechanisms.

[an error occurred while processing this directive]

参考文献

Adachi, H., Nakano, T., Miyagawa, N., Ishihama, N., Yoshioka, M., Katou, Y., Yaeno, T., Shirasu, K., and Yoshioka, H. (2015) WRKY Transcription Factors Phosphorylated by MAPK Regulate a Plant Immune NADPH Oxidase in Nicotiana benthamiana. Plant Cell 27, 2645-2663.
Agarwal, P.K., and Jha, B. (2010) Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biol Plantarum 54, 201-212.
Chalhoub, B., Denoeud, F., Liu, S., Parkin, I.A., Tang, H., Wang, X., Chiquet, J., Belcram, H., Tong, C., Samans, B., et al. (2014) Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345, 950-953.
Choi, H., Hong, J., Ha, J., Kang, J., and Kim, S.Y. (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275, 1723-1730.
Colcombet, J., and Hirt, H. (2008) Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J 413, 217-226.
Danquah, A., de Zélicourt, A., Boudsocq, M., Neubauer, J., Frey, N.F.D., Leonhardt, N., Pateyron, S., Gwinner, F., Tamby, J.P., Ortiz-Masia, D., et al. (2015) Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana. Plant Journal 82, 232-244.
Fujita, Y., Fujita, M., Satoh, R., Maruyama, K., Parvez, M.M., Seki, M., Hiratsu, K., Ohme-Takagi, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17, 3470-3488.
Furihata, T., Maruyama, K., Fujita, Y., Umezawa, T., Yoshida, R., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2006) Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. P Natl Acad Sci USA 103, 1988-1993.
Johnson, R.R., Wagner, R.L., Verhey, S.D., and Walker-Simmons, M.K. (2002) The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiology 130, 837-846.
Kagale, S., Links, M.G., and Rozwadowski, K. (2010) Genome-Wide Analysis of Ethylene-Responsive Element Binding Factor-Associated Amphiphilic Repression Motif-Containing Transcriptional Regulators in Arabidopsis. Plant Physiology 152, 1109-1134.
Kim, S., Kang, J.Y., Cho, D.I., Park, J.H., and Kim, S.Y. (2004) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant Journal 40, 75-87.
Kim, S.H., Kim, H.S., Bahk, S., An, J., Yoo, Y., Kim, J.Y., and Chung, W.S. (2017) Phosphorylation of the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for freezing tolerance in Arabidopsis. Nucleic Acids Res 45, 6613-6627.
Kobayashi, Y., Murata, M., Minami, H., Yamamoto, S., Kagaya, Y., Hobo, T., Yamamoto, A., and Hattori, T. (2005) Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant Journal 44, 939-949.
Li, S., Wang, W., Gao, J., Yin, K., Wang, R., Wang, C., Petersen, M., Mundy, J., and Qiu, J.L. (2016) MYB75 Phosphorylation by MPK4 Is Required for Light-Induced Anthocyanin Accumulation in Arabidopsis. Plant Cell 28, 2866-2883.
Li, Y., Liu, K., Tong, G., Xi, C., Liu, J., Zhao, H., Wang, Y., Ren, D., and Han, S. (2022) MPK3/MPK6-mediated phosphorylation of ERF72 positively regulates resistance to Botrytis cinerea through directly and indirectly activating the transcription of camalexin biosynthesis enzymes. J Exp Bot 73, 413-428.
Liang, W.W., Yang, B., Yu, B.J., Zhou, Z.L., Li, C., Jia, M., Sun, Y., Zhang, Y., Wu, F.F., Zhang, H.F., et al. (2013) Identification and analysis of MKK and MPK gene families in canola (Brassica napus L.). Bmc Genomics 14.
Mao, G., Meng, X., Liu, Y., Zheng, Z., Chen, Z., and Zhang, S. (2011) Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23, 1639-1653.
Niu, F., Wang, C., Yan, J., Guo, X., Wu, F., Yang, B., Deyholos, M.K., and Jiang, Y.Q. (2016) Functional characterization of NAC55 transcription factor from oilseed rape (Brassica napus L.) as a novel transcriptional activator modulating reactive oxygen species accumulation and cell death. Plant Mol Biol 92, 89-104.
Rodriguez, M.C.S., Petersen, M., and Mundy, J. (2010) Mitogen-Activated Protein Kinase Signaling in Plants. Annu Rev Plant Biol 61, 621-649.
Sun, Y., Wang, C., Yang, B., Wu, F.F., Hao, X.Y., Liang, W.W., Niu, F.F., Yan, J.L., Zhang, H.F., Wang, B.Y., et al. (2014) Identification and functional analysis of mitogen-activated protein kinase kinase kinase (MAPKKK) genes in canola (Brassica napus L.). Journal of Experimental Botany 65, 2171-2188.
Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci U S A 97, 11632-11637.
Wang, H., Ngwenyama, N., Liu, Y., Walker, J.C., and Zhang, S. (2007) Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19, 63-73.
Xu, J., and Zhang, S.Q. (2015) Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends in Plant Science 20, 56-64.
Yoshida, T., Fujita, Y., Sayama, H., Kidokoro, S., Maruyama, K., Mizoi, J., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant Journal 61, 672-685.
Zhang, M.M., and Zhang, S.Q. (2022) Mitogen-activated protein kinase cascades in plant signaling. Journal of Integrative Plant Biology 64, 301-341.
Zhao, B.Y., Hu, Y.F., Li, J.J., Yao, X., and Liu, K.D. (2016) BnaABF2, a bZIP transcription factor from rapeseed (Brassica napus L.), enhances drought and salt tolerance in transgenic Arabidopsis. Bot Stud 57.
Zhu, J.K. (2016) Abiotic Stress Signaling and Responses in Plants. Cell 167, 313-324.
张翰风 (2019). 拟南芥中两个钙相关蛋白激酶调控ABA信号转导的机制研究.(西北农林科技大学)

文章导航

/

[an error occurred while processing this directive]