研究论文

蒙古冰草咖啡酸氧甲基转移酶基因AmCOMT1的鉴定及功能分析

  • 杜锦瑜 ,
  • 孙震 ,
  • 苏彦龙 ,
  • 王贺萍 ,
  • 刘亚玲 ,
  • 吴振映 ,
  • 何峰 ,
  • 赵彦 ,
  • 付春祥
展开
  • 1内蒙古农业大学草原与资源环境学院/农业农村部饲草栽培、加工与高效利用重点实验室/草地资源教育部重点实验室, 呼和浩特 010018
    2中国科学院青岛生物能源与过程研究所, 青岛 266101
    3山东能源研究院, 青岛 266101
    4青岛新能源山东省实验室, 青岛 266101
    5内蒙古草业技术创新中心有限公司, 呼和浩特 010018

收稿日期: 2024-01-24

  录用日期: 2024-03-20

  网络出版日期: 2024-04-17

基金资助

内蒙古自治区种业科技创新重大示范工程“揭榜挂帅”项目(2022JBGS0014);中央引导地方科技发展资金(2022ZY006);青岛新能源山东实验室“抓攻关”项目(QNESLKPP202302);国家林业和草原局重大应急科技“揭榜挂帅”项目(202201);呼和浩特市重大科技专项(2021-重-社-2)

Identification and Functional Analysis of an Agropyron mongolicum Caffeic Acid 3-O-methyltransferase Gene AmCOMT1

  • Jinyu Du ,
  • Zhen Sun ,
  • Yanlong Su ,
  • Heping Wang ,
  • Yaling Liu ,
  • Zhenying Wu ,
  • Feng He ,
  • Yan Zhao ,
  • Chunxiang Fu
Expand
  • 1Key Laboratory of Grassland Resources and Education Ministry/Key Laboratory of Forage Cultivation, Processing and Efficient Utilization of Ministry of Agriculture and Rural Affairs/College of Grassland and Resources Environment of Inner Mongolia Agricultural University, Hohhot 010018, China
    2Qingdao Institute of Bioenergy and Process, Chinese Academy of Sciences, Qingdao 266101, China
    3Shandong energy Research Institute, Qingdao 266101, China
    4Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
    5Inner Mongolia Grass Technology Innovation Center, Hohhot 010018, China

Received date: 2024-01-24

  Accepted date: 2024-03-20

  Online published: 2024-04-17

摘要

蒙古冰草(即沙芦草(Agropyron mongolicum))是我国北方代表性的多年生牧草之一, 具有较强的耐寒和耐旱能力。在植物中, 咖啡酸氧甲基转移酶基因(COMT)是参与木质素和褪黑素生物合成的关键基因, 在调节植物生长、品质和抗逆性中发挥重要作用。通过分析蒙古冰草全长转录组数据, 从蒙古冰草中克隆了COMT候选基因AmCOMT1。该基因在茎秆和根等木质素含量高的组织中高表达, 且其表达受多种非生物胁迫诱导。在拟南芥(Arabidopsis thaliana)野生型(Col-0)和突变体(omt1-2)中过表达AmCOMT1, 显著促进了转基因拟南芥的木质素合成, 使突变体的木质素单体和组分恢复至野生型水平, 同时Col-0/35S:AmCOMT1中木质素总量提高11%。此外, AmCOMT1过表达显著提高了Col-0/35S:AmCOMT1转基因拟南芥的褪黑素含量。在盐胁迫条件下, 该株系平均根长相比野生型拟南芥提高20.3%, 表现出更强的抗逆性。综上,蒙古冰草AmCOMT1基因在木质素和褪黑素合成中发挥关键作用, 可提高转基因拟南芥的抗逆性, 在蒙古冰草等单子叶牧草遗传改良方面具有重要应用潜力。

本文引用格式

杜锦瑜 , 孙震 , 苏彦龙 , 王贺萍 , 刘亚玲 , 吴振映 , 何峰 , 赵彦 , 付春祥 . 蒙古冰草咖啡酸氧甲基转移酶基因AmCOMT1的鉴定及功能分析[J]. 植物学报, 2024 , 59(3) : 383 -396 . DOI: 10.11983/CBB24013

Abstract

Agropyron mongolicum is one of northern China’s most representative perennial forage grasses, showing strong tolerance to cold and drought. In plants, caffeic acid O-methyltransferase (COMT) is a key gene involved in the biosynthesis of lignin and melatonin, and plays an important role in regulating plant growth, biomass quality, and stress tolerance. In this study, through the analysis of the full-length transcriptome data of A. mongolicum, the COMT candidate gene AmCOMT1 was cloned. AmCOMT1 is highly expressed in tissues with high lignin content, such as stem and root, and its expression is induced by a variety of abiotic stresses, including drought and salt. Overexpression of AmCOMT1 in Arabidopsis wild type (Col-0) and mutant (omt1-2) significantly promoted the synthesis of lignin in transgenic Arabidopsis, restoring the lignin content and composition of the mutant to wild type level and the lignin content in Col-0/35S:AmCOMT1 was increased by 11%. In addition, overexpression of AmCOMT1 increased the melatonin content in Col-0/35S:AmCOMT1 transgenic Arabidopsis. Under salt stress conditions, the average root length of this transgenic line increased by 20.3% compared to the wild type, showing higher stress tolerance. In this study, we identified AmCOMT1 from A. mongolicum as a key gene regulating both lignin biosynthesis and melatonin biosynthesis, improving the stress tolerance of transgenic Arabidopsis. Our results highlighted the application potential of AmCOMT1 in genetic improvement of forage grasses through molecular breeding.

参考文献

[1] Byeon Y, Lee HY, Lee K, Back K (2014). Caffeic acid O-methyltransferase is involved in the synthesis of melatonin by methylating N-acetylserotonin in Arabidopsis. J Pineal Res 57, 219-227.
[2] Cao YR, Yan XY, Ran SY, Ralph J, Smith RA, Chen XP, Qu CM, Li JN, Liu LZ (2022). Knockout of the lignin pathway gene BnF5H decreases the S/G lignin compositional ratio and improves Sclerotinia sclerotiorum resistance in Brassica napus. Plant Cell Environ 45, 248-261.
[3] Cen HF, Wang TT, Liu HY, Wang H, Tian DY, Li X, Cui X, Guan C, Zang H, Li MQ, Zhang YW (2020). Overexpression of MsASMT1 promotes plant growth and decreases flavonoids biosynthesis in transgenic alfalfa (Medicago sativa L.). Front Plant Sci 11, 489.
[4] Chang JJ (2021). Identification of Melatonin Synthesis Gene and the Signal Transduction Mechanism of Melatonin-regulating Cold Tolerance in Watermelon. Doctoral dissertation. Yangling: Northwest A&F University. pp. 1-104. (in Chinese)
  常静静 (2021). 西瓜褪黑素合成基因鉴定及褪黑素调控抗冷性的信号传导机制. 博士论文. 杨凌: 西北农林科技大学. pp. 1-104.
[5] Chang JJ, Guo YL, Yan JY, Zhang ZX, Yuan L, Wei CH, Zhang Y, Ma JX, Yang JQ, Zhang X, Li H (2021). The role of watermelon caffeic acid O-methyltransferase (ClCOMT1) in melatonin biosynthesis and abiotic stress tolerance. Hortic Res 8, 210.
[6] Chen F, Zhuo CL, Xiao XR, Pendergast TH, Devos KM (2021). A rapid thioacidolysis method for biomass lignin composition and tricin analysis. Biotechnol Biofuels 14, 18.
[7] Do CT, Pollet B, Thévenin J, Sibout R, Denoue D, Barrière Y, Lapierre C, Jouanin L (2007). Both caffeoyl coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta 226, 1117-1129.
[8] Fu CX, Mielenz JR, Xiao XR, Ge YX, Hamilton CY, Rodriguez M Jr, Chen F, Foston M, Ragauskas A, Bouton J, Dixon RA, Wang ZY (2011). Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci USA 108, 3803-3808.
[9] Fu LP (2016). Cloning of TaCOMT Genes Associated with Stem Lignin Content in Wheat, Development of Functional Markers and Association Analysis. Master’s thesis. Beijing: Chinese Academy of Agricultural Sciences. pp. 1-59. (in Chinese)
  付路平 (2016). 小麦茎秆木质素含量相关基因TaCOMT克隆、功能标记开发和关联分析. 硕士论文. 北京: 中国农业科学院. pp. 1-59.
[10] Guo Z, Zhao YL, Liu JL, Xue YC (2006). The genetic control and development of caffeic acid O-methyltransferase (COMT). Mol Plant Breed 4(S2), 122-126. (in Chinese)
  郭昭, 赵一玲, 刘景利, 薛永常 (2006). 木质素合成酶咖啡酸3-O-甲基转移酶(COMT)的遗传调控研究. 分子植物育种 4(S2), 122-126.
[11] He F, Machemer-Noonan K, Golfier P, Unda F, Dechert J, Zhang W, Hoffmann N, Samuels L, Mansfield SD, Rausch T, Wolf S (2019). The in vivo impact of MsLAC1, a Miscanthus laccase isoform, on lignification and lignin composition contrasts with its in vitro substrate preference. BMC Plant Biol 19, 552.
[12] Huang WH (2014). Selection of Control Gene in Quantitative PCR and Analysis of Differential Expression of P5CS Gene in Agropyron mongolicum Keng under Drought Stress. Master's thesis. Hohhot: Inner Mongolia Agricultural University. pp. 1-33. (in Chinese)
  黄文华 (2014). 蒙古冰草干旱胁迫下内参基因的筛选及P5CS基因定量表达分析. 硕士论文. 呼和浩特: 内蒙古农业大学. pp. 1-33.
[13] Huang YH, Liu SJ, Yuan S, Guan C, Tian DY, Cui X, Zhang YW, Yang FY (2017). Overexpression of ovine AANAT and HIOMT genes in switchgrass leads to improved growth performance and salt-tolerance. Sci Rep 7, 12212.
[14] Jung JH, Altpeter F (2016). TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Mol Biol 92, 131-142.
[15] Lam KC, Ibrahim RK, Behdad B, Dayanandan S (2007). Structure, function, and evolution of plant O-methyltransferases. Genome 50, 1001-1013.
[16] Li C, He QL, Zhang F, Yu JW, Li C, Zhao TL, Zhang Y, Xie QW, Su BR, Mei L, Zhu SJ, Chen JH (2019a). Melatonin enhances cotton immunity to Verticillium wilt via manipulating lignin and gossypol biosynthesis. Plant J 100, 784-800.
[17] Li SG, Xu YH, Bi Y, Zhang B, Shen SL, Jiang TJ, Zheng XL (2019b). Melatonin treatment inhibits gray mold and induces disease resistance in cherry tomato fruit during postharvest. Postharvest Biol Technol 157, 110962.
[18] Li Z, Wang HZ, Li RF, Wei JH (2009). Lignin biosynthesis and manipulation in plants and utilization of biomass energy. Chin Bull Bot 44, 262-272. (in Chinese)
  李桢, 王宏芝, 李瑞芬, 魏建华 (2009). 植物木质素合成调控与生物质能源利用. 植物学报 44, 262-272.
[19] Lü XP (2022). Response of Lignin Synthesis in Haloxylon ammodendron to Salt and Osmotic Stress and Functional Identification of HaLAC15 and HaCOMT. Doctoral dissertation. Lanzhou: Lanzhou University. pp. 1-193. (in Chinese)
  吕昕培 (2022). 梭梭木质素合成对盐和渗透胁迫的响应及HaLAC15HaCOMT的功能鉴定. 博士论文. 兰州: 兰州大学. pp. 1-193.
[20] Ma C, Pei ZQ, Bai X, Zhang TG (2023). Advances in functions and action mechanisms of phytomelatonin. J Cold- Arid Agric Sci 2, 883-888. (in Chinese)
  马成, 裴子琦, 白雪, 张腾国 (2023). 植物褪黑素功能及其作用机制的研究进展. 寒旱农业科学 2, 883-888.
[21] Ma QH, Xu Y (2008). Characterization of a caffeic acid 3-O-methyltransferase from wheat and its function in lignin biosynthesis. Biochimie 90, 515-524.
[22] Peng DL, Chen XG, Yin YP, Lu KL, Yang WB, Tang YH, Wang ZL (2014). Lodging resistance of winter wheat (Triticum aestivum L.): lignin accumulation and its related enzymes activities due to the application of paclobutrazol or gibberellin acid. Field Crops Res 157, 1-7.
[23] Ralph J, Lapierre C, Boerjan W (2019). Lignin structure and its engineering. Curr Opin Biotechnol 56, 240-249.
[24] Rashid S, Raza AA, Muhammad T (2017). Expression profiling of Hspb1 and Tp53 genes through RT-qPCR in different cancer types of Canis familiaris. Iranian J Biotechnol 15, 186-193.
[25] Sa CN (2023). Study on growth and physiological adaptation strategy of Agropyron mongolicum under drought stress. Master’s thesis. Yinchuan: Ningxia University. pp. 1-44. (in Chinese)
  撒春宁 (2023). 干旱胁迫条件下蒙古冰草生长及生理适应策略研究. 硕士论文. 银川: 宁夏大学. pp. 1-44.
[26] Shan CR, Chen XH, Ding YF, Zhao W, Lu H, Gao SZ, Qi FH, Zhan YG, Zeng FS (2023). Functional analysis of FmCCoAOMT gene in Fraxinus mandshurica during lignin synthesis and abiotic stress. Bull Bot Res 43, 768-778. (in Chinese)
  单超然, 陈晓慧, 丁云飞, 赵威, 卢晗, 高尚珠, 齐凤慧, 詹亚光, 曾凡锁 (2023). 水曲柳FmCCoAOMT基因在木质素合成及非生物胁迫中的功能分析. 植物研究 43, 768-778.
[27] Shi JX, Yan YJ, Dong R, Tao X, Sun XL, Huang CC (2023). The Arabidopsis HSP1 mediates chitin-induced defense response by regulating CERK1 protein level. Chin Bull Bot 58, 712-719. (in Chinese)
  史君星, 闫一嘉, 董汝, 陶轩, 孙晓龙, 黄聪聪 (2023). 拟南芥HSP1调节CERK1蛋白水平影响几丁质激发的防御反应. 植物学报 58, 712-719.
[28] Song Y, Wang DH, Wu JB, Zhou L, Wang GD, Wang ZZ (2012). Cloning and analysis of caffeic acid O-methyl- transferase gene (SmCOMT1) from Salvia miltiorrhiza Bge. Bull Bot Res 32, 437-443. (in Chinese)
  宋银, 王东浩, 吴锦斌, 周露, 王国栋, 王喆之 (2012). 丹参咖啡酸-O-甲基转移酶基因(SmCOMT1)的克隆及其分析. 植物研究 32, 437-443.
[29] Sun SS, Han YP, Yan YY, Gong B, Shi QH (2019). Overexpression of caffeic acid-O-methyltransferase gene (CO- MT1) regulates physiological response of tomato seedlings to drought stress. Plant Physiol J 55, 1109-1122. (in Chinese)
  孙莎莎, 韩亚萍, 闫燕燕, 巩彪, 史庆华 (2019). 过表达咖啡酸-O-甲基转移酶基因(COMT1)调控番茄幼苗对干旱胁迫生理响应. 植物生理学报 55, 1109-1122.
[30] Tan DX, Manchester LC, Reiter RJ, Qi WB, Karbownik M, Calvo JR (2000). Significance of melatonin in antioxidative defense system: reactions and products. Biol Signals Recept 9, 137-159.
[31] Wang HM, Yu YC, Fu CX, Zhou GK, Gao HH (2014). Progress of a key enzyme caffeoyl-CoA 3-O-methyltransferase in lignin biosynthesis. Genom Appl Biol 33, 458-466. (in Chinese)
  王华美, 于延冲, 付春祥, 周功克, 高欢欢 (2014). 木质素合成关键酶咖啡酰辅酶A氧甲基转移酶的研究进展. 基因组学与应用生物学 33, 458-466.
[32] Wang MX, Zhu XL, Wang K, Lu CG, Luo MY, Shan TL, Zhang ZY (2018). A wheat caffeic acid 3-O-methyltrans- ferase TaCOMT-3D positively contributes to both resistance to sharp eyespot disease and stem mechanical strength. Sci Rep 8, 6543.
[33] Wang RH, Shi L, Tang GG, Liang YC, Zhang CY (2003). Effect of osmotic stress on activities of protective enzymes system in Agropyron mongolicum seedling. Chin Bull Bot 20, 330-335. (in Chinese)
  王荣华, 石雷, 汤庚国, 梁寅初, 张称意 (2003). 渗透胁迫对蒙古冰草幼苗保护酶系统的影响. 植物学通报 20, 330-335.
[34] Wang RH, Shi L, Tang GG, Liang YC, Zhang CY (2004). Effect of NaCl stress on growth and content of severalions of wheatgrass. Bull Bot Res 24, 326-330. (in Chinese)
  王荣华, 石雷, 汤庚国, 梁寅初, 张称意 (2004). 盐胁迫下蒙古冰草幼苗生长和离子含量的变化. 植物研究 24, 326-330.
[35] Wei JH, Zhao HY, Lu SF, Wang T, Ma QH, Song YR (2001). Cloning of cDNA encoding COMT from Chinese white poplar (Populus tomentosa), sequence analysis and specific expression. Acta Bot Sin 43, 326-328. (in Chinese)
  魏建华, 赵华燕, 卢善发, 王台, 马庆虎, 宋艳茹 (2001). 毛白杨COMT基因cDNA的克隆、序列与特异性表达分析. 植物学报 43, 326-328.
[36] Weng JK, Mo HP, Chapple C (2010). Over-expression of F5H in COMT-deficient Arabidopsis leads to enrichment of an unusual lignin and disruption of pollen wall formation. Plant J 64, 898-911.
[37] Wu ZY, Wang NF, Hisano H, Cao YP, Wu FY, Liu WW, Bao Y, Wang ZY, Fu CX (2019). Simultaneous regulation of F5H in COMT-RNAi transgenic switchgrass alters effects of COMT suppression on syringyl lignin biosynthesis. Plant Biotechnol J 17, 836-845.
[38] Yang WJ (2019). Cloning and Functional Analysis of Melatonin Synthesis Related Gene TaCOMT in Wheat (Triticum aestivum L.). Master's thesis. Yangling: Northwest A&F University. pp. 1-57. (in Chinese)
  杨雯晶 (2019). 小麦褪黑素合成相关基因TaCOMT的克隆及功能分析. 硕士论文. 杨凌: 西北农林科技大学. pp. 1-57.
[39] Yang WJ, Du YT, Zhou YB, Chen J, Xu ZS, Ma YZ, Chen M, Min DH (2019). Overexpression of TaCOMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis. Int J Mol Sci 20, 652.
[40] Yao LM, Hu XQ, Zhou F, Zheng YQ, Wang GD, Liu XM (2019). Antisense CCoAOMT gene regulates lignin biosynthesis in Betula platyphylla. Bull Bot Res 39, 123-130. (in Chinese)
  姚连梅, 胡晓晴, 周菲, 郑要强, 王国东, 刘雪梅 (2019). 白桦反义CCoAOMT基因调控木质素生物合成. 植物研究 39, 123-130.
[41] Yue LR, Liu YJ, Liu CX, Zhou YW (2022). Cloning and functional analysis of miR398a from Chrysanthemum × grandiflora in response to salt stress. Bull Bot Res 42, 986-996. (in Chinese)
  岳莉然, 刘颖婕, 刘晨旭, 周蕴薇 (2022). 响应盐胁迫调控的露地菊miR398a的克隆及功能研究. 植物研究 42, 986-996.
[42] Zhao DK, Yao ZP, Zhang JM, Zhang RJ, Mou ZM, Zhang X, Li ZH, Feng XL, Chen SY, Reiter RJ (2021). Melatonin synthesis genes N-acetylserotonin methyltransferases evolved into caffeic acid O-methyltransferases and both assisted in plant terrestrialization. J Pineal Res 71, e12737.
[43] Zhao DQ, Luan YT, Shi WB, Tang YH, Huang XQ, Tao J (2022). Melatonin enhances stem strength by increasing lignin content and secondary cell wall thickness in herbaceous peony. J Exp Bot 73, 5974-5991.
[44] Zhao Y, Chen XY, Shi FM, Yun JF, Wang JJ (2015). Cloning and expression analysis of MwDREB3 from Mongolian wheatgrass. Acta Agrest Sin 23, 377-382. (in Chinese)
  赵彦, 陈雪英, 石凤敏, 云锦凤, 王俊杰 (2015). 蒙古冰草MwDREB3基因的克隆及表达分析. 草地学报 23, 377-382.
[45] Zhao Y, Gao X, Wang D, Gao CP, Yun JF (2017). Cloning and expression analysis of LHcb1 from Agropyron mongolicum Keng under drought stress. Acta Bot Boreal-Occident Sin 37, 211-216. (in Chinese)
  赵彦, 高鑫, 王丹, 高翠萍, 云锦凤 (2017). 蒙古冰草LHcb1基因克隆及干旱胁迫下的表达分析. 西北植物学报 37, 211-216.
[46] Zhao Y, Han HJ, Zhang R, Tong XM, Gao CP (2020). Functional identification of MwMYB4 gene from Agropyron mongolicum Keng. Acta Bot Boreal-Occident Sin 40, 565-571. (in Chinese)
  赵彦, 韩慧杰, 张锐, 童新梅, 高翠萍 (2020). 蒙古冰草MwMYB4基因功能鉴定. 西北植物学报 40, 565-571.
文章导航

/

674-3466/bottom_cn.htm"-->