研究报告

金鱼草XTH家族基因鉴定及抗核盘菌和雄蕊瓣化相关基因筛选

  • 赵晗茜 ,
  • 宋佳怡 ,
  • 杨洁 ,
  • 赵永晶 ,
  • 夏文念 ,
  • 顾伟卓 ,
  • 汪仲毅 ,
  • 杨楠 ,
  • 胡慧贞
展开
  • 西南林业大学园林园艺学院, 云南省功能性花卉资源及产业化技术工程中心, 昆明 650224


* 胡慧贞, 云南省高层次人才引进计划青年人才, 国家林业和草原局荷花及水生植物产业研发创新联盟秘书长。2017年于华中农业大学获农学博士学位, 长期致力于荷花、金鱼草和油菜等植物切花和株型形成机理及细胞壁抗性研究。发表高质量SCI论文近20篇, 累计影响因子超过100; 主持国家级和省部级项目6项。E-mail: Jenny_8729@163.com

收稿日期: 2023-08-07

  录用日期: 2024-01-30

  网络出版日期: 2024-01-30

基金资助

国家自然科学基金地区科学基金(32360070);国家自然科学基金青年基金(31901571);西南林业大学科研启动项目(01102-112109);云南省农业基础联合面上项目(202301BD070001-072)

Identification of XTH Family Genes in Antirrhinum majus and Screening of Genes Involoved in Sclerotinia sclerotiorum Resistance and Stamen Petalization

  • Hanqian Zhao ,
  • Jiayi Song ,
  • Jie Yang ,
  • Yongjing Zhao ,
  • Wennian Xia ,
  • Weizhuo Gu ,
  • Zhongyi Wang ,
  • Nan Yang ,
  • Huizhen Hu
Expand
  • Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China

Received date: 2023-08-07

  Accepted date: 2024-01-30

  Online published: 2024-01-30

摘要

木葡聚糖内转糖苷酶/水解酶(XTH)属于糖苷水解酶16家族(GH16), 是一类介导木葡聚糖(XyG)-纤维素骨架构建和重组的酶。为探明XTH家族基因在金鱼草(Antirrhinum majus)中的潜在生物学功能, 通过生物信息学分析, 结合转录组测序(RNA-seq)和实时荧光定量聚合酶链式反应(qRT-PCR)探究了XTH家族基因分别在金鱼草瓣化和非瓣化雄蕊以及抗感核盘菌材料中的表达水平。结果表明, 鉴定出的33个AmXTH蛋白主要保守基序为ExDxE, 分为3个亚组。AmXTH基因启动子的顺式作用元件多为生长发育、抗病及抗逆类。经RNA-seq和qRT-PCR验证, 最终挖掘出4个正向介导抗病的关键候选基因(AmXTH3141833), 1个负向介导抗病的关键候选基因(AmXTH23), 12个正向介导雄蕊瓣化的关键候选基因(AmXTH179112122232426282933)以及2个负向介导雄蕊瓣化的关键候选基因(AmXTH1531); 其中AmXTH23 AmXTH33可能同时在金鱼草抗核盘菌和雄蕊瓣化中发挥作用。该研究初步挖掘出参与金鱼草抗核盘菌及雄蕊瓣化的AmXTH候选基因, 为进一步揭示其生物学功能奠定了基础。

本文引用格式

赵晗茜 , 宋佳怡 , 杨洁 , 赵永晶 , 夏文念 , 顾伟卓 , 汪仲毅 , 杨楠 , 胡慧贞 . 金鱼草XTH家族基因鉴定及抗核盘菌和雄蕊瓣化相关基因筛选[J]. 植物学报, 2024 , 59(2) : 188 -203 . DOI: 10.11983/CBB23107

Abstract

Xyloglucan endotransglucosylase/hydrolases (XTH) belongs to glycoside hydrolase, family 16 (GH16) and it is a class of enzymes that mediate the construction and recombination of xyglucan-cellulose skeleton. To explore the potential biological functions of XTH family genes in Antirrhinum majus. In this paper, bioinformatics analysis, RNA-seq analysis and qRT-PCR were used to investigate the expression levels of the family genes in the petalized and non-petalized stamens and disease-resistant materials. The results showed that the main conserved motif from 33 identified AmXTH proteins was ExDxE, which could be divided into 3 subgroups. Most of the cis-acting elements of AmXTH promoter are growth and development, disease resistance and stress resistance. RNA-seq and qRT-PCR revalidation finally unearthed four positive candidate genes (AmXTH3, 14, 18, and 33) and one candidate genes (AmXTH23) for nagatively mediated Sclerotinia sclerotiorum resistance. There were 12 positive AmXTH candidate genes (AmXTH1, 7, 9, 11, 21, 22, 23, 24, 26, 28, 29 and 33) and 2 negative AmXTH candidate genes (AmXTH15 and 31). Among them, AmXTH23 and 33 may play a role in both of the A. majus resistant to S. sclerotiorum and stamen petalization. In this study, the candidate AmXTH genes involved in S. sclerotiorum resistance and stamen petalization of A. majus were preliminarily excavated, which laid a foundation for further revealing the gene function.

参考文献

[1] Cardarelli M, Cecchetti V (2014). Auxin polar transport in stamen formation and development: how many actors? Front Plant Sci 5, 333.
[2] Claverie J, Balacey S, Lema?tre-Guillier C, Brulé D, Chiltz A, Granet L, Noirot E, Daire X, Darblade B, Héloir MC, Poinssot B (2018). The cell wall-derived xyloglucan is a new DAMP triggering plant immunity in Vitis vinifera and Arabidopsis thaliana. Front Plant Sci 9, 1725.
[3] de Azevedo Souza C, Li SD, Lin AZ, Boutrot F, Grossmann G, Zipfel C, Somerville SC (2017). Cellulose-derived oligomers act as damage-associated molecular patterns and trigger defense-like responses. Plant Physiol 173, 2383-2398.
[4] Divol F, Vilaine F, Thibivilliers S, Kusiak C, Sauge MH, Dinant S (2007). Involvement of the xyloglucan endotransglycosylase/hydrolases encoded by celery XTH1 and Arabidopsis XTH33 in the phloem response to aphids. Plant Cell Environ 30, 187-201.
[5] Fan TG (2014). Action of Excessive Petal Formation Caused by Rose AGAMOUS Gene Related to Floral Organ Development Under Low Temperature. Master’s thesis. Baoding: Hebei Agricultural University. pp. 9-48. (in Chinese)
  范天刚 (2014). 月季花器官发育基因AGAMOUS对低温导致花朵过度重瓣化的作用研究. 硕士论文. 保定: 河北农业大学. pp. 9-48.
[6] Guo XM, Stotz HU (2007). Defense against Sclerotinia sclerotiorum in Arabidopsis is dependent on jasmonic acid, salicylic acid, and ethylene signaling. Mol Plant Mirobe Interact 20, 1384-1395.
[7] Han Y, Ban QY, Hou YL, Meng K, Suo JT, Rao JP (2016). Isolation and characterization of two persimmon xyloglucan endotransglycosylase/hydrolase (XTH) genes that have divergent functions in cell wall modification and fruit postharvest softening. Front Plant Sci 7, 624.
[8] Harada T, Torii Y, Morita S, Onodera R, Hara Y, Yokoyama R, Nishitani K, Satoh S (2011). Cloning, characterization, and expression of xyloglucan endotransglucosylase/hydrolase and expansion genes associated with petal growth and development during carnation flower opening. J Exp Bot 62, 815-823.
[9] Hu HZ, Tang YW, Wu J, Chen FZ, Yang YD, Pan XC, Dong X, Jin XD, Liu S, Du XZ (2021). Brassica napus mediator subunit16 induces BnMED25- and BnWRKY33-activated defense signaling to confer Sclerotinia sclerotiorum resistance. Front Plant Sci 12, 663536.
[10] Hu HZ, Zhang R, Feng SQ, Wang YM, Wang YT, Fan CF, Li Y, Liu ZY, Schneider R, Xia T, Ding SY, Persson S, Peng LC (2018). Three AtCesA6-like members enhance biomass production by distinctively promoting cell growth in Arabidopsis. Plant Biotechnol J 16, 976-988.
[11] Huang X, Tian DK, Zhang WW, Zeng SJ, Mo HB (2014). Comparison of floral organ morphological development between single and double flowers in Nelumbo nucifera. Plant Diver Resour 36, 303-309. (in Chinese)
  黄秀, 田代科, 张微微, 曾宋君, 莫海波 (2014). 荷花“重瓣化”的花器官形态发育比较观察. 植物分类与资源学报 36, 303-309.
[12] Hyodo H, Yamakawa S, Takeda Y, Tsuduki M, Yokota A, Nishitani K, Kohchi T (2003). Active gene expression of a xyloglucan endotransglucosylase/hydrolase gene, XTH9, in inflorescence apices is related to cell elongation in Arabidopsis thaliana. Plant Mol Biol 52, 473-482.
[13] Jia XL, He BX, Guo DD, Guo ML (2018). Research progress in the function of expansins and xyloglucan endotransglucosylase/hydrolase. Plant Physiol J 54, 1659-1668. (in Chinese)
  贾鑫磊, 何贝轩, 郭丹丹, 郭美丽 (2018). 膨胀素和木葡聚糖内转葡糖基酶/水解酶基因的功能研究进展. 植物生理学报 54, 1659-1668.
[14] Jiang JF (2022). Bioinformatics Analysis of Ginseng XTH Family Genes and Function Analysis of Two PgXTH Genes. Master’s thesis. Changchun: Jilin University. pp. 1-69. (in Chinese)
  江俊峰 (2022). 人参XTH家族基因生物信息学分析及两个PgXTH基因的功能分析. 硕士论文. 长春: 吉林大学. pp. 1-69.
[15] Li MM, Zhang DF, Gao Q, Luo YF, Zhang H, Ma B, Chen CH, Whibley A, Zhang Y, Cao YH, Li Q, Guo H, Li JH, Song YZ, Zhang Y, Copsey L, Li Y, Li XX, Qi M, Wang JW, Chen Y, Wang D, Zhao JY, Liu GC, Wu B, Yu LL, Xu CY, Li J, Zhao SC, Zhang YJ, Hu SN, Liang CZ, Yin Y, Coen E, Xue YB (2019a). Genome structure and evolution of Antirrhinum majus L. Nat Plants 5, 174-183.
[16] Li Q, Hu AH, Dou WF, Qi JJ, Long Q, Zou XP, Lei TG, Yao LX, He YR, Chen SC (2019b). Systematic analysis and functional validation of citrus XTH genes reveal the role of Csxth04 in citrus bacterial canker resistance and tolerance. Front Plant Sci 10, 1109.
[17] Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402-408.
[18] Luo WP, Chen SP, Gong YX (2008). Breeding and pest control of Antirrhinum majus. Chin Flower Horticul (8), 23-25. (in Chinese)
  罗维平, 陈少萍, 龚衍熙 (2008). 金鱼草的繁殖与病虫害防治. 中国花卉园艺 (8), 23-25.
[19] Malinowski R, Fry SC, Zuzga S, Wi?niewska A, Godlewski M, Noyszewski A, Barczak-Brzy?ek A, Malepszy S, Filipecki M (2018). Developmental expression of the cucumber Cs-XTH1 and Cs-XTH3 genes, encoding xyloglucan endotransglucosylase/hydrolases, can be influenced by mechanical stimuli. Acta Physiol Plant 40, 130.
[20] Marciniak K, Przedniczek K (2019). Comprehensive insight into gibberellin- and jasmonate-mediated stamen development. Genes 10, 811.
[21] Miedes E, Suslov D, Vandenbussche F, Kenobi K, Ivakov A, Van Der straeten D, Lorences EP, Mellerowicz EJ, Verbelen JP, Vissenberg K (2013). Xyloglucan endotransglucosylase/hydrolase (XTH) overexpression affects growth and cell wall mechanics in etiolated Arabidopsis hypocotyls. J Exp Bot 64, 2481-2497.
[22] Pitaksaringkarn W, Matsuoka K, Asahina M, Miura K, Sage-Ono K, Ono M, Yokoyama R, Nishitani K, Ishii T, Iwai H, Satoh S (2014). XTH20 and XTH19 regulated by ANAC071 under auxin flow are involved in cell proliferation in incised Arabidopsis inflorescence stems. Plant J 80, 604-614.
[23] Sasidharan R, Pierik R (2010). Cell wall modification involving XTHs controls phytochrome-mediated petiole elongation in Arabidopsis thaliana. Plant Signal Behav 5, 1491-1492.
[24] Shi YY, Li DY, Zhang HJ, Song FM (2011). Cell wall-mediated disease resistance and its molecular mechanism in plants. Plant Physiol J 47, 661-668. (in Chinese)
  师莹莹, 李大勇, 张慧娟, 宋凤鸣 (2011). 植物细胞壁介导的抗病性及其分子机制. 植物生理学报 47, 661-668.
[25] Sun R, Yang YL, Li YJ, Zhang H, Li XK (2023). Genome- wide identification and analysis of PLATZ transcription factor gene family in foxtail millet. Chin Bull Bot 58, 548-559. (in Chinese)
  孙蓉, 杨宇琭, 李亚军, 张会, 李旭凯 (2023). 谷子PLATZ转录因子基因家族的鉴定和分析. 植物学报 58, 548-559.
[26] Takahashi D, Johnson KL, Hao PF, Tuong T, Erban A, Sampathkumar A, Bacic A, Livingston DP, Kopka J, Kuroha T, Yokoyama R, Nishitani K, Zuther E, Hincha DK (2021). Cell wall modification by the xyloglucan endotransglucosylase/hydrolase XTH19 influences freezing tolerance after cold and sub-zero acclimation. Plant Cell Environ 44, 915-930.
[27] Tian YR, Fan TG, Zhang G, Li YH (2016). Expression and analysis of key genes of excessive double flowers in rose caused by low temperature. Chin J Tropical Crops 37, 1147-1154. (in Chinese)
  田亚然, 范天刚, 张钢, 李永红 (2016). 低温引起月季花朵过度重瓣化关键基因的表达及分析. 热带作物学报 37, 1147-1154.
[28] Wang RS (2019). Cloning and Functional Analysis of the AmDEFH28 Gene of Antirrhinum majus. Master’s thesis. Hefei: Anhui Agricultural University.pp:1-67. (in Chinese)
  王瑞生 (2019). 金鱼草AmDEFH28基因克隆和功能分析. 硕士论文. 合肥: 安徽农业大学. pp. 1-67.
[29] Watanabe Y, Niki T, Norikoshi R, Nakano M, Ichimura K (2022). Soluble carbohydrate concentration and expression of expansin and xyloglucan endotransglucosylase/ hydrolase genes in epidermal and parenchyma cells during lily flower opening. J Plant Physiol 270, 153615.
[30] Witasari LD, Huang FC, Hoffmann T, Rozhon W, Fry SC, Schwab W (2019). Higher expression of the strawberry xyloglucan endotransglucosylase/hydrolase genes FvXTH9 and FvXTH6 accelerates fruit ripening. Plant J 100, 1237-1253.
[31] Wu D, Liu AQ, Qu XY, Liang JY, Song M (2020). Genome- wide identification, and phylogenetic and expression profiling analyses of XTH gene families in Brassica rapa L. and Brassica oleracea L. BMC Genomics 21, 782.
[32] Wu J, Zhou YM, Wang YP (2018). Research progress on molecular mechanisms of Brassica napus-Sclerotinia sclerotiorum interaction. Chin J Oil Crop Sci 40, 721-729. (in Chinese)
  吴健, 周永明, 王幼平 (2018). 油菜与核盘菌互作分子机理研究进展. 中国油料作物学报 40, 721-729.
[33] Wu N, Qin L, Cui K, Li HO, Liu ZS, Xia ST (2023). Cloning of Brassica napus EXA1 gene and its regulation on plant disease resistance. Chin Bull Bot 58, 385-393. (in Chinese)
  吴楠, 覃磊, 崔看, 李海鸥, 刘忠松, 夏石头 (2023). 甘蓝型油菜EXA1的克隆及其对植物抗病的调控作用. 植物学报 58, 385-393.
[34] Xu PP, Fang S, Chen HY, Cai WM (2020). The brassinosteroid-responsive xyloglucan endotransglucosylase/hydrolase 19 (XTH19) and XTH23 genes are involved in lateral root development under salt stress in Arabidopsis. Plant J 104, 59-75.
[35] Xu TS (2021). Cell Wall Components Changes in Red Skin Ginseng and Function Analysis of Two Non-typical XTH Family Genes. Master’s thesis. Changchun: Jilin University. pp. 1-59. (in Chinese)
  徐天舒 (2021). 红皮病人参细胞壁组分变化及两个非典型XTH家族基因的功能探究. 硕士论文. 长春: 吉林大学. pp. 1-59.
[36] Xu XW (2023). Identification and Functional Analysis of Broad-spectrum Resistance Protein Induced by P1 Protein of Sugarcane Streak Mosaic Virus. Master’s thesis. Yangzhou: Yangzhou University. pp. 6-79. (in Chinese)
  徐小伟 (2023). 甘蔗线条花叶病毒P1蛋白诱导的广谱抗病蛋白的鉴定及功能研究. 硕士论文. 扬州: 扬州大学. pp. 6-79.
[37] Xuan Y (2020). Excavation of the Key Genes of Xyloglucan Metabolic Pathway and Primary Funcational Analysis of MtXTH 3 in Medicago truncatula Under Environmental Stresses. Doctoral dissertation. Nanjing: Nanjing Agricultural University. pp. 1-151. (in Chinese)
  宣云 (2020). 响应环境胁迫的蒺藜苜蓿XG代谢途径关键基因的挖掘及MtXTH3功能初步研究. 博士论文. 南京: 南京农业大学. pp. 1-151.
[38] Yan J, Liu YQ, Hou SW (2018). Recent advances in disease resistance proteins in plant immunity. Chin Bull Bot 53, 250-263. (in Chinese)
  闫佳, 刘雅琼, 侯岁稳 (2018). 植物抗病蛋白研究进展. 植物学报 53, 250-263.
[39] Yang Y, Miao YF, Zhong SW, Fang Q, Wang YG, Dong B, Zhao HB (2022). Genome-wide identification and expression analysis of XTH gene family during floweropening stages in Osmanthus fragrans. Plants 11, 1015.
[40] Zhang R, Hu Z, Wang YT, Hu HZ, Li FC, Li M, Ragauskas A, Xia T, Han HY, Tang JF, Yu HZ, Xu BQ, Peng LC (2023). Single-molecular insights into the breakpoint of cellulose nanofibers assembly during saccharification. Nat Commun 14, 1100.
[41] Zhao XH, Wang QJ, Li C, Chen XD, Xiao W, Gao DS, Fu XL (2018). Genome-wide identification of ethylene responsive factor (ERF) family genes in peach and screening of genes related to germination. Chin Bull Bot 53, 612-624. (in Chinese)
  赵雪惠, 王庆杰, 李晨, 陈修德, 肖伟, 高东升, 付喜玲 (2018). 桃ERF转录因子家族生物信息学分析及芽萌发相关基因筛选. 植物学报 53, 612-624.
文章导航

/