研究报告

钾营养状况介导的油菜叶片生长及其对叶际微生物的影响

  • 宋毅 ,
  • 陈航航 ,
  • 崔鑫 ,
  • 陆志峰 ,
  • 廖世鹏 ,
  • 张洋洋 ,
  • 李小坤 ,
  • 丛日环 ,
  • 任涛 ,
  • 鲁剑巍
展开
  • 华中农业大学资源与环境学院/农业农村部(长江中下游)耕地保育重点实验室/华中农业大学微量元素研究中心, 武汉 430070

收稿日期: 2023-06-11

  录用日期: 2023-11-02

  网络出版日期: 2023-11-13

基金资助

国家自然科学基金(32072680);国家重点研发计划(2022YFD2301405);中央高校基本科研业务费专项基金(26620-21ZH001)

Potassium Nutrient Status-mediated Leaf Growth of Oilseed Rape (Brassica napus) and Its Effect on Phyllosphere Microorganism

  • Yi Song ,
  • Hanghang Chen ,
  • Xin Cui ,
  • Zhifeng Lu ,
  • Shipeng Liao ,
  • Yangyang Zhang ,
  • Xiaokun Li ,
  • Rihuan Cong ,
  • Tao Ren ,
  • Jianwei Lu
Expand
  • Microelement Research Center, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China

Received date: 2023-06-11

  Accepted date: 2023-11-02

  Online published: 2023-11-13

摘要

为探究钾营养介导下的油菜(Brassica napus)叶片生长对叶际微生物群落的影响, 利用田间试验, 设置0、30和180 kg K2O∙hm-2 3个钾肥用量, 分别定义为K0 (钾缺乏)、K30 (钾不足)和K180 (钾充足) 3个钾营养水平。在苗期, 分别选取典型叶片测定其表型参数, 并利用16S-RNA基因高通量测序测定油菜叶际微生物群落组成。结果表明, 不同钾肥用量显著影响油菜叶片的钾含量, 与K0相比, K30和K180处理钾含量分别提高66.7%和158.3%。不同钾营养状况下, 油菜叶片结构和组分存在明显差异, 叶片钾含量与叶面积及叶片可溶性糖、蔗糖、果糖和淀粉的含量呈显著正相关, 而与叶片气孔密度呈显著负相关。钾肥施用显著影响油菜叶际微生物的多样性, 与K0处理相比, 施钾处理叶际微生物群落多样性指数显著升高, 而K30和K180处理间无明显差异, 但在群落的β多样性中, K30处理表现出更大的离散性。缺钾增加了油菜叶际变形菌门(Proteobacteria)的相对丰度, 使得黄单胞菌科(Xanthomonadaceae)细菌显著富集。施用钾肥后细菌共现网络变简单, 但促进了高丰度物种与其它物种的相互作用。通过联合分析油菜叶表型性状与叶际细菌群落, 发现叶片糖组分(可溶性糖、蔗糖、果糖和淀粉)、干物质重以及叶面积是影响叶际细菌群落以及优势物种的关键因素。综上表明, 施钾影响油菜叶片的物质组成, 调控油菜叶际微生物群落结构, 充足的钾营造的叶片微生物组“稳态”可能是钾营养增强作物生物胁迫抗性的潜在途径。

本文引用格式

宋毅 , 陈航航 , 崔鑫 , 陆志峰 , 廖世鹏 , 张洋洋 , 李小坤 , 丛日环 , 任涛 , 鲁剑巍 . 钾营养状况介导的油菜叶片生长及其对叶际微生物的影响[J]. 植物学报, 2024 , 59(1) : 54 -65 . DOI: 10.11983/CBB23076

Abstract

To investigate the effect of potassium (K) nutrition on leaf growth and phyllosphere microbial community in oilseed rape (Brassica napus), a field experiment with three K fertilizer application rates (0, 30, and 180 kg K2O∙hm‒2), referred to as K0 (deficient K), K30 (insufficient K), and K180 (sufficient K), was conducted. Typical leaves were selected to measure the phenotypic parameters during the seedling stage. The composition of the phyllosphere microbial community was determined using high-throughput sequencing of the 16S RNA gene. The main findings revealed K fertilization significantly affected leaf K content. Compared to the K0 treatment, the K content increased by 66.7% and 158.3% for the K30 and K180 treatment, respectively. Significant differences in the structure and components of oilseed rape leaves were observed under different K nutritional conditions. Leaf K content exhibited a significant positive correlation with leaf area, and content of soluble sugar, sucrose, fructose, and starch, while it showed a significant negative correlation with leaf stomatal density. K fertilization had a remarkable impact on the diversity of phyllosphere microbial community. K fertilization led to a significant increase in the diversity index, while no significant difference was observed between the K30 and K180 treatments. However, the K30 treatment displayed greater dispersion in terms of community β-diversity compared to the K180 treatment. K deficiency increased the relative abundance of Proteobacteria, resulting in an obvious enrichment of Xanthomonadaceae. The application of K fertilizer simplified the bacterial co-occurrence network but increased the interaction between high-abundance species and other species. A comprehensive analysis of leaf phenotypic parameters and phyllosphere bacterial communities revealed that leaf sugar components (soluble sugar, sucrose, fructose, and starch), dry matter weight, and leaf area were the key factors influencing the phyllosphere bacterial communities and dominant species. In conclusion, K fertilizer application influenced the material compositions of oilseed rape leaves and regulated the microbial community structure. The establishment of "homeostasis" within phyllosphere microbial communities by maintaining sufficient leaf K nutrition status might serve as a potential pathway for enhancing crop biological stress resistance.

参考文献

[1] 鲍士旦 (2000). 土壤农化分析(第3版). 北京: 中国农业出版社. pp. 103-109.
[2] 高扬 (2014). 小麦叶片表皮蜡质的测定及其对光合和农艺性状的效应分析. 硕士论文. 杨凌: 西北农林科技大学. pp. 22-23.
[3] 胡文诗 (2021). 钾营养调控冬油菜叶片光合面积和光合速率的机制. 博士论文. 武汉: 华中农业大学. pp. 34-53.
[4] 姜丹 (2009). 油菜叶际微生物多样性及其对敌敌畏的降解. 硕士论文. 石家庄: 河北科技大学. pp. 42-49.
[5] 刘姗 (2021). 叶际微生物地理分布格局特征及驱动机制. 硕士论文. 杭州: 浙江大学. pp. 31-46.
[6] 龙海, 李一农, 李芳荣, 徐浪 (2010). 植物病原菌黄单胞菌的分类研究进展. 植物保护 36(5), 11-16.
[7] 陆志峰, 鲁剑巍, 潘勇辉, 鲁飘飘, 李小坤, 丛日环, 任涛 (2016). 钾素调控植物光合作用的生理机制. 植物生理学报 52, 1773-1784.
[8] 申长卫 (2017). 施钾影响梨叶片和果实糖合成及分配的生理与分子机制. 博士论文. 南京: 南京农业大学. pp. 49-50.
[9] 苏静, 祝令成, 刘茜, 彭云静, 马百全, 马锋旺, 李明军 (2022). 果实糖代谢与含量调控的研究进展. 果树学报 39, 266-279.
[10] 王宏亮, 郭思义, 王棚涛, 宋纯鹏 (2018). 植物气孔发育机制研究进展. 植物学报 53, 164-174.
[11] 王凯悦, 陈芳泉, 邵惠芳, 韩丹, 许自成, 黄五星 (2018). 植物角质膜研究进展. 植物学报 53, 556-564.
[12] 吴一苓, 李芳兰, 胡慧 (2022). 叶脉结构与功能及其对叶片经济谱的影响. 植物学报 57, 388-398.
[13] 朱新广, 许大全 (2021). 光合作用研究技术. 上海: 上海科学技术出版社. pp. 176-188.
[14] 邹琦 (1995). 植物生理生化实验指导. 北京: 中国农业出版社. pp. 70-72.
[15] Arnault G, Mony C, Vandenkoornhuyse P (2023). Plant microbiota dysbiosis and the Anna Karenina principle. Trends Plant Sci 28, 18-30.
[16] Breia R, Conde A, Badim H, Fortes AM, Gerós H, Granell A (2021). Plant SWEETs: from sugar transport to plant- pathogen interaction and more unexpected physiological roles. Plant Physiol 186, 836-852.
[17] Chaudhry V, Runge P, Sengupta P, Doehlemann G, Parker JE, Kemen E (2021). Shaping the leaf microbiota: plant-microbe-microbe interactions. J Exp Bot 72, 36-56.
[18] Chen T, Nomura K, Wang XL, Sohrabi R, Xu J, Yao LY, Paasch BC, Ma L, Kremer J, Cheng YT, Zhang L, Wang N, Wang ET, Xin XF, He SY (2020). A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580, 653-657.
[19] Copeland JK, Yuan LJ, Layeghifard M, Wang PW, Guttman DS (2015). Seasonal community succession of the phyllosphere microbiome. Mol Plant Microbe Interact 28, 274-285.
[20] Darlison J, Mogren L, Rosberg AK, Grudén M, Minet A, Liné C, Mieli M, Bengtsson T, H?kansson ?, Uhlig E, Becher PG, Karlsson M, Alsanius BW (2019). Leaf mineral content govern microbial community structure in the phyllosphere of spinach (Spinacia oleracea) and rocket (Diplotaxis tenuifolia). Sci Total Environ 20, 501-512.
[21] de Bang TC, Husted S, Laursen KH, Persson DP, Schjoerring JK (2021). The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol 229, 2446-2469.
[22] De Costa DM, Rathnayake RMPS, De Costa WAJM, Kumari WMD, Dissanayake DMN (2006). Variation of phyllosphere microflora of different rice varieties in Sri Lanka and its relationship to leaf anatomical and physiological characters. J Agron Crop Sci 192, 209-220.
[23] Fürnkranz M, Wanek W, Richter A, Abell G, Rasche F, Sessitsch A (2008). Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME J 2, 561-570.
[24] Gong TY, Xin XF (2021). Phyllosphere microbiota: community dynamics and its interaction with plant hosts. J Integr Plant Biol 63, 297-304.
[25] González-Teuber M, Palma-Onetto V, Aguilera-Sammaritano J, Mith?fer A (2021). Roles of leaf functional traits in fungal endophyte colonization: potential implications for host-pathogen interactions. J Ecol 109, 3972-3987.
[26] Hou WF, Xue XX, Li XK, Khan MR, Yan JY, Ren T, Cong RH, Lu JW (2019). Interactive effects of nitrogen and potassium on: grain yield, nitrogen uptake and nitrogen use efficiency of rice in low potassium fertility soil in China. Field Crops Res 236, 14-23.
[27] Hunter PJ, Hand P, Pink D, Whipps JM, Bending GD (2010). Both leaf properties and microbe-microbe interactions influence within-species variation in bacterial population diversity and structure in the lettuce (Lactuca species) phyllosphere. Appl Environ Microb 76, 8117-8125.
[28] Jiang M, Wang ZS, Li XN, Liu SQ, Song FB, Liu FL (2021). Relationship between endophytic microbial diversity and grain quality in wheat exposed to multi-generational CO2 elevation. Sci Total Environ 776, 146029.
[29] Kumar P, Kumar T, Singh S, Tuteja N, Prasad R, Singh J (2020). Potassium: a key modulator for cell homeostasis. J Biotechnol 324, 198-210.
[30] Laforest-Lapointe I, Messier C, Kembel SW (2016). Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 4, 27.
[31] Li Y, Zhang ZY, Liu WY, Ke MJ, Qu Q, Zhou ZG, Lu T, Qian HF (2021). Phyllosphere bacterial assemblage is affected by plant genotypes and growth stages. Microbiol Res 248, 126743.
[32] Lu ZF, Ren T, Li J, Hu WS, Zhang JL, Yan JY, Li XK, Cong RH, Guo SW, Lu JW (2020). Nutrition-mediated cell and tissue-level anatomy triggers the covariation of leaf photosynthesis and leaf mass per area. J Exp Bot 71, 6524-6537.
[33] Mercier J, Lindow SE (2000). Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Appl Environ Microbiol 66, 369-374.
[34] Mo YY, Peng F, Gao XF, Xiao P, Logares R, Jeppesen E, Ren KX, Xue YY, Yang J (2021). Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir. Microbiome 9, 128.
[35] Niu SQ, Gao Y, Zi HX, Liu Y, Liu XM, Xiong XQ, Yao QQ, Qin ZW, Chen N, Guo L, Yang YZ, Qin P, Lin JZ, Zhu YH (2022). The osmolyte-producing endophyte Streptomyces albidoflavus OsiLf-2 induces drought and salt tolerance in rice via a multi-level mechanism. Crop J 10, 375-386.
[36] Qi SS, Bogdanov A, Cnockaert M, Acar T, Ranty-Roby S, Coenye T, Vandamme P, K?nig GM, Crüsemann M, Carlier A (2021). Induction of antibiotic specialized metabolism by co-culturing in a collection of phyllosphere bacteria. Environ Microbiol 23, 2132-2151.
[37] Reisberg EE, Hildebrandt U, Riederer M, Hentschel U (2013). Distinct phyllosphere bacterial communities on Arabidopsis wax mutant leaves. PLoS One 8, e78613.
[38] Ren T, Lu JW, Li H, Zou J, Xu HL, Liu XW, Li XK (2013). Potassium-fertilizer management in winter oilseed-rape production in China. J Plant Nutr Soil Sci 179, 429-440.
[39] Ritpitakphong U, Falquet L, Vimoltust A, Berger A, Métraux JP, L'Haridon F (2016). The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen. New Phytol 210, 1033-1043.
[40] R?ttjers L, Faust K (2018). From hairballs to hypotheses—biological insights from microbial networks. FEMS Microbiol Rev 42, 761-780.
[41] Ryffel F, Helfrich EJN, Kiefer P, Peyriga L, Portais JC, Piel J, Vorholt AJ (2016). Metabolic footprint of epiphytic bacteria on Arabidopsis thaliana leaves. ISME J 10, 632-643.
[42] Sohrabi R, Paasch BC, Liber JA, He SY (2023). Phyllosphere microbiome. Annu Rev Plant Biol 74, 539-568.
[43] Sun AQ, Jiao XY, Chen QL, Wu AL, Zheng Y, Lin YX, He JZ, Hu HW (2021). Microbial communities in crop phyllosphere and root endosphere are more resistant than soil microbiota to fertilization. Soil Biol Biochem 153, 108113.
[44] Tao SQ, Zhang YX, Tian CM, Duplessis S, Zhang NL (2022). Elevated ozone concentration and nitrogen addition increase poplar rust severity by shifting the phyllosphere microbial community. J Fungi 8, 523.
[45] Venkatachalam S, Ranjan K, Prasanna R, Ramakrishnan B, Thapa S, Kanchan A (2016). Diversity and functional traits of culturable microbiome members, including cyanobacteria in the rice phyllosphere. Plant Biol 18, 627-637.
[46] Wagner MR, Lundberg DS, Del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T (2016). Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun 7, 12151.
[47] Waqas M, Yaning C, Iqbal H, Shareef M, Rehman HU, Bilal HM (2021). Synergistic consequences of salinity and potassium deficiency in quinoa: linking with stomatal patterning, ionic relations and oxidative metabolism. Plant Physiol Biochem 159, 17-27.
[48] Wilson M, Lindow SE (1994). Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning. Appl Environ Microbiol 60, 4468-4477.
[49] Xiong C, He JZ, Singh BK, Zhu YG, Wang JT, Li PP, Zhang QB, Han LL, Shen JP, Ge AH, Wu CF, Zhang LM (2021a). Rare taxa maintain the stability of crop mycobiomes and ecosystem functions. Environ Microbiol 23, 1907-1924.
[50] Xiong C, Zhu YG, Wang JT, Singh B, Han LL, Shen JP, Li PP, Wang GB, Wu CF, Ge AH, Zhang LM, He JZ (2021b). Host selection shapes crop microbiome assembly and network complexity. New Phytol 229, 1091-1104.
[51] Zhang JL, Li J, Geng GT, Hu WS, Ren T, Cong RH, Li XK, Lu JW (2020). Combined application of nitrogen and potassium reduces seed yield loss of oilseed rape caused by Sclerotinia stem rot disease. Agron J 112, 5143-5157.
[52] Zhu YG, Xiong C, Wei Z, Chen QL, Ma B, Zhou SYD, Tan JQ, Zhang LM, Cui HL, Duan GL (2022a). Impacts of global change on the phyllosphere microbiome. New Phytol 234, 1977-1986.
[53] Zhu YX, Han Y, Liu GL, Bian ZR, Yan XY, Li YY, Long HA, Yu GS, Wang Y (2022b). Novel indole-mediated potassium ion import system confers a survival advantage to the Xanthomonadaceae family. ISME J 16, 1717-1729.
文章导航

/

674-3466/bottom_cn.htm"-->