适配体技术及其在植物科学研究中的应用
收稿日期: 2023-04-14
录用日期: 2023-08-19
网络出版日期: 2023-10-10
基金资助
中央高校基本科研业务费专项资金(BLX202116);中国科学院青年创新促进会(2019081);国家自然科学基金(32030010);国家自然科学基金(32000558);北京市自然科学基金(5232016);抗松材线虫病高产油松新品种设计与培育(2022ZD0401605)
Aptamers and Their Applications in Plant Science Researches
Received date: 2023-04-14
Accepted date: 2023-08-19
Online published: 2023-10-10
适配体是一种从人工合成的文库中筛选出来、能够特异结合靶标分子的单链寡核苷酸或多肽。适配体基于自身结构和序列与靶分子特异结合并调节其活性, 应用于生物体内分子功能研究及新型药物制剂的研发。近年来, 多肽适配体广泛应用于医学、遗传学和分子生物学等多个领域, 成为一种高效、特异且功能强大的新工具。在植物研究中, 随着相应体系的建立、应用和推广, 适配体技术逐渐成为研究植物分子功能的有效工具。该文综述了不同类型的适配体、筛选原理及优缺点, 以及在植物研究中的应用。可以预见, 随着分子设计育种技术的发展, 适配体技术有望成为植物科学领域有价值的应用工具。
李奕, 张曦, 袁艳辉, 公丕昌, 林金星 . 适配体技术及其在植物科学研究中的应用[J]. 植物学报, 2023 , 58(6) : 935 -945 . DOI: 10.11983/CBB23050
Aptamers are single-stranded oligonucleotides or short peptides that are screened and selected from artificially synthesized libraries and can specifically bind to the target molecules. Aptamers can bind and regulate the activities of its target molecules based on their own structure and sequence, and are applied to in vivo molecular function researches and new drug preparation explorations. In recent years, peptide aptamers have been widely used in various fields, such as medicine, genetics and molecular biology, which is becoming a highly efficient, specific and powerful new tool. In plants, with the establishment, application and promotion of the corresponding system, aptamers have gradually been become an effective tool for studying plant molecular functions. In this review, we summarized the classification, screening principles and basic applications of aptamers, with special emphasis on their applications in plant breeding. It can be expected that with the development of molecular design bio-breeding technology, aptamers can be cooperated with transgenic techniques and become a valuable application tool in the plant science fields.
Key words: aptamer; nucleic acid; peptide; plants; screening
[1] | 蔡先洪, 孙强, 吴谦, 叶浩楠, 巫沁芳, 区文卉, 陈锦灿, 陈兰美 (2022). 基于毛细管电泳法-指数富集配体系统进化筛选维吉霉素M1适配体及其检测应用. 分析化学 50, 728-738. |
[2] | 公丕昌, 王丽, 贺超英 (2010). 多肽配体技术在植物功能基因组学中的应用前景. 遗传 32, 548-554. |
[3] | 黄子珂, 刘超, 付强强, 李进, 邹建梅, 谢斯滔, 邱丽萍 (2018). 核酸适配体荧光探针在生化分析和生物成像中的研究进展. 应用化学 35, 28-39. |
[4] | 林禹晴, 毛东鹏, 胡加枫, 王鑫垚, 段鹏虎, 朴云仙 (2022). 基于甘蔗渣衍生碳量子点的荧光适配体探针的制备及其对17β-雌二醇的检测效果. 环境工程学报 16, 3796-3804. |
[5] | 梅雪娇, 李梦思, 杨阳, 刘萌, 刘红, 韩欣宇, 曹敏杰, 刘光明 (2019). 拟穴青蟹原肌球蛋白抗原表位适配体小肽的筛选与鉴定. 食品安全质量检测学报 10, 1790-1796. |
[6] | 覃磊鑫, 刘倩, 闵楠, 边江涛, 高云, 王梁华, 焦炳华, 孙铭娟 (2022). 计算机模拟海洋生物毒素适配体的应用. 生命的化学 42, 1617-1624. |
[7] | 王建武, 王文娟, 相微微, 代惠萍, 王海庆, 屈香香, 亢福仁 (2022). 过表达MtVP1对马铃薯表型及糖代谢的影响. 植物学报 57, 197-208. |
[8] | 王田幸子, 朱峥, 陈悦, 刘玉晴, 燕高伟, 徐珊, 张彤, 马金姣, 窦世娟, 李莉云, 刘国振 (2021). 水稻OsWRKY42是Xa21介导的抗白叶枯病途径新元件. 植物学报 56, 687-698. |
[9] | 谢先荣, 曾栋昌, 谭健韬, 祝钦泷, 刘耀光 (2021). 基于CRISPR编辑系统的DNA片段删除技术. 植物学报 56, 44-49. |
[10] | 杨凯如, 贾绮玮, 金佳怡, 叶涵斐, 王盛, 陈芊羽, 管易安, 潘晨阳, 辛德东, 方媛, 王跃星, 饶玉春 (2022). 水稻黄绿叶调控基因YGL18的克隆与功能解析. 植物学报 57, 276-287. |
[11] | Aagaard L, Rossi JJ (2007). RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev 59, 75-86. |
[12] | Abdeeva IA, Maloshenok LG, Pogorelko GV, Mokrykova MV, Bruskin SA (2019). RNA-aptamers—as targeted inhibitors of protein functions in plants. J Plant Physiol 232, 127-129. |
[13] | Apostolopoulos V, Bojarska J, Chai TT, Elnagdy S, Kaczmarek K, Matsoukas J, New R, Parang K, Lopez OP, Parhiz H, Perera CO, Pickholz M, Remko M, Saviano M, Skwarczynski M, Tang YF, Wolf WM, Yoshiya T, Zabrocki J, Zielenkiewicz P, AlKhazindar M, Barriga V, Kelaidonis K, Sarasia EM, Toth I (2021). A global review on short peptides: frontiers and perspectives. Molecules 26, 430. |
[14] | Bai JY, Luo Y, Wang X, Li S, Luo M, Yin M, Zuo YL, Li GL, Yao JY, Yang H, Zhang MD, Wei W, Wang ML, Wang R, Fan CH, Zhao Y (2020). A protein-independent fluorescent RNA aptamer reporter system for plant genetic engineering. Nat Commun 11, 3847. |
[15] | Bao ZL, Clancy MA, Carvalho RF, Elliott K, Folta KM (2017). Identification of novel growth regulators in plant populations expressing random peptides. Plant Physiol 175, 619-627. |
[16] | Chen J, Chen MY, Zhu TF (2022). Directed evolution and selection of biostable L-DNA aptamers with a mirror-image DNA polymerase. Nat Biotechnol 40, 1601-1609. |
[17] | Cho JH, Ha NR, Koh SH, Yoon MY (2016). Design of a PKCδ-specific small peptide as a theragnostic agent for glioblastoma. Anal Biochem 496, 63-70. |
[18] | Colombo M, Masiero S, Rosa S, Caporali E, Toffolatti SL, Mizzotti C, Tadini L, Rossi F, Pellegrino S, Musetti R, Velasco R, Perazzolli M, Vezzulli S, Pesaresi P (2020). NoPv1: a synthetic antimicrobial peptide aptamer targeting the causal agents of grapevine downy mildew and potato late blight. Sci Rep 10, 17574. |
[19] | Colombo M, Mizzotti C, Masiero S, Kater MM, Pesaresi P (2015). Peptide aptamers: the versatile role of specific protein function inhibitors in plant biotechnology. J Integr Plant Biol 57, 892-901. |
[20] | Ellington AD, Szostak JW (1990). In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818-822. |
[21] | G?azowska S, Mravec J (2021). An aptamer highly specific to cellulose enables the analysis of the association of cellulose with matrix cell wall polymers in vitro and in muro. Plant J 108, 579-599. |
[22] | Gong PC, Quan H, He CY (2014). Targeting MAGO proteins with a peptide aptamer reinforces their essential roles in multiple rice developmental pathways. Plant J 80, 905-914. |
[23] | Gray BP, Brown KC (2014). Combinatorial peptide libraries: mining for cell-binding peptides. Chem Rev 114, 1020-1081. |
[24] | Hanes J, Schaffitzel C, Knappik A, Plückthun A (2000). Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat Biotechnol 18, 1287-1292. |
[25] | Hao ZZ, Gong PC, He CY, Lin JX (2018). Peptide aptamers to inhibit protein function in plants. Trends Plant Sci protein function in plants. Trends Plant Sci 23, 281-284. |
[26] | Hoppe-Seyler F, Crnkovic-Mertens I, Tomai E, Butz K (2004). Peptide aptamers: specific inhibitors of protein function. Curr Mol Med 4, 529-538. |
[27] | Huang JJ, Wang D, Li H, Tang YQ, Ma X, Tang HQ, Lin M, Liu Z (2022). Antifungal activity of an artificial peptide aptamer SNP-D4 against Fusarium oxysporum. PeerJ 10, e12756. |
[28] | Ishida R, Adachi T, Yokota A, Yoshihara H, Aoki K, Nakamura Y, Hamada M (2020). RaptRanker: in silico RNA aptamer selection from HT-SELEX experiment based on local sequence and structure information. Nucleic Acids Res 48, e82. |
[29] | Islam MZ, Sharmin S, Moniruzzaman M, Yamazaki M (2018). Elementary processes for the entry of cell-penetrating peptides into lipid bilayer vesicles and bacterial cells. Appl Microbiol Biotechnol 102, 3879-3892. |
[30] | Jeong HY, Kim H, Lee M, Hong JJ, Lee JH, Kim J, Choi MJ, Park YS, Kim SC (2020). Development of HER2- specific aptamer-drug conjugate for breast cancer therapy. Int J Mol Sci 21, 9764. |
[31] | Kim SH, Lee EH, Lee SC, Kim AR, Park HH, Son JW, Koh SH, Yoon MY (2020). Development of peptide aptamers as alternatives for antibody in the detection of amyloid- beta 42 aggregates. Anal Biochem 609, 113921. |
[32] | Lautner G, Balogh Z, Bardóczy V, Mészáros T, Gyurcsányi RE (2010). Aptamer-based biochips for label-free detection of plant virus coat proteins by SPR imaging. Analyst 135, 918-926. |
[33] | Li JY, Zhang C, He YB, Li SY, Yan L, Li YC, Zhu ZW, Xia LQ (2023). Plant base editing and prime editing: the current status and future perspectives. J Integr Plant Biol 65, 444-467. |
[34] | Li Z, Uzawa T, Zhao HC, Luo SC, Yu HH, Kobatake E, Ito Y (2014). In vitro selection of peptide aptamers using a ribosome display for a conducting polymer. J Biosci Bioeng 117, 501-503. |
[35] | Liu CC, Mack AV, Tsao ML, Mills JH, Lee HS, Choe H, Farzan M, Schultz PG, Smider VV (2008). Protein evolution with an expanded genetic code. Proc Natl Acad Sci USA 105, 17688-17693. |
[36] | Liu CX, Chen LL (2022). Circular RNAs: characterization, cellular roles, and applications. Cell 185, 2390. |
[37] | Liu DX, Tien TTT, Bao DT, Linh NTP, Park H, Yeo SJ (2019). A novel peptide aptamer to detect Plasmodium falciparum lactate dehydrogenase. J Biomed Nanotechnol 15, 204-211. |
[38] | Lou XH, Qian JR, Xiao Y, Viel L, Gerdon AE, Lagally ET, Atzberger P, Tarasow TM, Heeger AJ, Soh HT (2009). Micromagnetic selection of aptamers in microfluidic channels. Proc Natl Acad Sci USA 106, 2989-2994. |
[39] | Mendoza-Figueroa JS, Kvarnheden A, Méndez-Lozano J, Rodríguez-Negrete EA, de los Monteros RA, Soriano-García M (2018). A peptide derived from enzymatic digestion of globulins from amaranth shows strong affinity binding to the replication origin of tomato yellow leaf curl virus reducing viral replication in Nicotiana benthamiana. Pestic Biochem Physiol 145, 56-65. |
[40] | Millward SW, Fiacco S, Austin RJ, Roberts RW (2007). Design of cyclic peptides that bind protein surfaces with antibody-like affinity. ACS Chem Biol 2, 625-634. |
[41] | Mohr S, Bakal C, Perrimon N (2010). Genomic screening with RNAi: results and challenges. Annu Rev Biochem 79, 37-64. |
[42] | Mou QB, Xue XY, Ma Y, Banik M, Garcia V, Guo WJ, Wang J, Song TJ, Chen LQ, Lu Y (2022). Efficient delivery of a DNA aptamer-based biosensor into plant cells for glucose sensing through thiol-mediated uptake. Sci Adv 8, eabo0902. |
[43] | Nelson CE, Gersbach CA (2016). Engineering delivery vehicles for genome editing. Annu Rev Chem Biomol Eng 7, 637-662. |
[44] | Nimjee SM, White RR, Becker RC, Sullenger BA (2017). Aptamers as therapeutics. Annu Rev Pharmacol Toxicol 57, 61-79. |
[45] | Ormancey M, Guillotin B, Merret R, Camborde L, Duboé C, Fabre B, Pouzet C, Impens F, van Haver D, Carpentier MC, Clemente HS, Aguilar M, Lauressergues D, Scharff LB, Pichereaux C, Burlet-Schiltz O, Bousquet- Antonelli C, Gevaert K, Thuleau P, Plaza S, Combier JP (2023). Complementary peptides represent a credible alternative to agrochemicals by activating translation of targeted proteins. Nat Commun 14, 254. |
[46] | Pagadala NS, Syed K, Tuszynski J (2017). Software for molecular docking: a review. Biophys Rev 9, 91-102. |
[47] | Qu J, Yu SQ, Zheng Y, Zheng Y, Yang H, Zhang JL (2017). Aptamer and its applications in neurodegenerative diseases. Cell Mol Life Sci 74, 683-695. |
[48] | Roy S, Narang BK, Gupta MK, Abbot V, Singh V, Rawal RK (2018). Molecular docking studies on isocytosine analogues as xanthine oxidase inhibitors. Drug Res (Stuttg) 68, 395-402. |
[49] | Song CG, Yang J, Wang YD, Ding G, Guo LP, Qin JC (2022). Mechanisms and transformed products of aflatoxin B1 degradation under multiple treatments: a review. Crit Rev Food Sci Nutr 14, 1-13. |
[50] | Song XF, Guo P, Ren SC, Xu TT, Liu CM (2013). Antagonistic peptide technology for functional dissection of CLV3/ ESR genes in Arabidopsis. Plant Physiol 161, 1076-1085. |
[51] | Tan WH, Donovan MJ, Jiang JH (2013). Aptamers from cell-based selection for bioanalytical applications. Chem Rev 113, 2842-2862. |
[52] | Tan Y, Li YY, Qu YX, Su YY, Peng YB, Zhao ZL, Fu T, Wang XQ, Tan WH (2021). Aptamer-peptide conjugates as targeted chemosensitizers for breast cancer treatment. ACS Appl Mater Interfaces 13, 9436-9444. |
[53] | Tan YY, Guo QP, Xie Q, Wang KM, Yuan BY, Zhou Y, Liu JB, Huang J, He XX, Yang XH, He CM, Zhao XY (2014). Single-walled carbon nanotubes (SWCNTs)-assisted cell- systematic evolution of ligands by exponential enrichment (Cell-SELEX) for improving screening efficiency. Anal Chem 86, 9466-9472. |
[54] | Torti S, Schlesier R, Thümmler A, Bartels D, R?mer P, Koch B, Werner S, Panwar V, Kanyuka K, Wirén NV, Jones JDG, Hause G, Giritch A, Gleba Y (2021). Transient reprogramming of crop plants for agronomic performance. Nat Plants 7, 159-171. |
[55] | Tuerk C, Gold L (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505-510. |
[56] | Tungsirisurp S, O’Reilly R, Napier R (2023). Nucleic acid aptamers as aptasensors for plant biology. Trends Plant Sci 28, 359-371. |
[57] | Wang HF, La Russa M, Qi LS (2016). CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 85, 227-264. |
[58] | Wang Q, Liu W, Xing YQ, Yang XH, Wang KM, Jiang R, Wang P, Zhao Q (2014). Screening of DNA aptamers against myoglobin using a positive and negative selection units integrated microfluidic chip and its biosensing application. Anal Chem 86, 6572-6579. |
[59] | Wang T, Chen CY, Larcher LM, Barrero RA, Veedu RN (2019). Three decades of nucleic acid aptamer technologies: lessons learned, progress and opportunities on aptamer development. Biotechnol Adv 37, 28-50. |
[60] | Wilson DS, Keefe AD, Szostak JW (2001). The use of mRNA display to select high-affinity protein-binding peptides. Proc Natl Acad Sci USA 98, 3750-3755. |
[61] | Xiao XR, Li H, Zhao LJ, Zhang YF, Liu ZC (2021). Oligonucleotide aptamers: recent advances in their screening, molecular conformation and therapeutic applications. Biomed Pharmacother 143, 112232. |
[62] | Xu Q, Ye X, Ma X, Li H, Tang HQ, Tang YQ, Liu Z (2019). Engineering a peptide aptamer to target calmodulin for the inhibition of Magnaporthe oryzae. Fungal Biol 123, 489-496. |
[63] | Xu ZF, Jiang XL, Li Y, Ma X, Tang YQ, Li H, Yi KX, Li JJ, Liu Z (2022). Antifungal activity of montmorillonite/peptide aptamer nanocomposite against Colletotrichum gloeosporioides on Stylosanthes. Int J Biol Macromol 217, 282-290. |
[64] | Yang CH, Tsai CH (2022). Aptamer against Aflatoxin B1 obtained by SELEX and applied in detection. Biosensors 12, 848. |
[65] | Zhang J, Lv XF, Feng W, Li XQ, Li KJ, Deng YL (2018). Aptamer-based fluorometric lateral flow assay for creatine kinase MB. Mikrochim Acta 185, 364. |
[66] | Zhang YY, Li LZ, Zhang H, Shang JJ, Li C, Naqvi SMZA, Birech Z, Hu JD (2022a). Ultrasensitive detection of plant hormone abscisic acid-based surface-enhanced Raman spectroscopy aptamer sensor. Anal Bioanal Chem 414, 2757-2766. |
[67] | Zhang ZL, Liu C, Li K, Li XX, Xu MM, Guo YF (2022b). CLE14 functions as a "brake signal" to suppress age-dependent and stress-induced leaf senescence by promoting JUB1-mediated ROS scavenging in Arabidopsis. Mol Plant 15, 179-188. |
[68] | Zhou JH, Rossi J (2017). Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov 16, 181-202. |
[69] | Zhou Y, Zhuo YT, Peng RZ, Zhang YT, Du YL, Zhang Q, Sun Y, Qiu LP (2021). Functional nucleic acid-based cell imaging and manipulation. Sci China Chem 64, 1817-1825. |
[70] | Zhu C, Yang G, Ghulam M, Li LS, Qu F (2019). Evolution of multi-functional capillary electrophoresis for high-efficiency selection of aptamers. Biotechnol Adv 37, 107432. |
/
〈 | 〉 |