技术方法

利用转基因毛状根高效培育大豆嵌合植株的方法

  • 陈佳欣 ,
  • 梅浩 ,
  • 黄彩翔 ,
  • 梁宗原 ,
  • 全依桐 ,
  • 李东鹏 ,
  • 布威麦尔耶姆·赛麦提 ,
  • 李欣欣 ,
  • 廖红
展开
  • 福建农林大学资源与环境学院, 根系生物学研究中心, 福州 350002
*E-mail: xxli@fafu.edu.cn

收稿日期: 2023-02-20

  录用日期: 2023-05-31

  网络出版日期: 2023-05-31

基金资助

国家自然科学基金(32072661)

A Highly Efficient Method to Generate Chimeric Soybean Plant with Transgenic Hairy Roots

  • Jiaxin Chen ,
  • Hao Mei ,
  • Caixiang Huang ,
  • Zongyuan Liang ,
  • Yitong Quan ,
  • Dongpeng Li ,
  • Buweimaieryemu·Saimaiti ,
  • Xinxin Li ,
  • Hong Liao
Expand
  • Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Received date: 2023-02-20

  Accepted date: 2023-05-31

  Online published: 2023-05-31

摘要

建立高效的大豆(Glycine max)转基因毛状根嵌合植株体系对于推动大豆功能基因组学研究具有重要意义。该研究利用3种大豆基因型材料比较了不同共培养条件下毛状根诱导率及成活率。结果显示, 用发根农杆菌(Agrobacterium rhizogenes)侵染外植体并在黑暗条件下共培养1天是诱导毛状根形成的有效策略。研究发现清除下胚轴处不定根可显著增加毛状根的数目并促进根系生长, 进而提高转基因毛状根的阳性率。毛状根诱导14天接种根瘤菌, 可增强生长初期转基因毛状根与根瘤菌的接触, 从而提高大豆的结瘤效率。该研究成功建立了一种高效培育大豆转基因毛状根嵌合植株的方法, 可广泛应用于大豆基因功能研究。

本文引用格式

陈佳欣 , 梅浩 , 黄彩翔 , 梁宗原 , 全依桐 , 李东鹏 , 布威麦尔耶姆·赛麦提 , 李欣欣 , 廖红 . 利用转基因毛状根高效培育大豆嵌合植株的方法[J]. 植物学报, 2024 , 59(1) : 89 -98 . DOI: 10.11983/CBB23021

Abstract

Chimeric soybean plants with transgenic hairy roots is very important for soybean functional genomics. In this study, we used three soybean genotypes to compare their hairy root induction rate and plant survival rate under different co-cultivation conditions. Our results showed that co-culturing the explants infected by Agrobacterium rhizogenes for 1 d under dark conditions was an effective strategy to induce hairy roots. We also found that removing the adventitious roots (AR) at hypocotyl significantly increased number of hairy roots, enhanced their growth and subsequently improved the positive rate of transgenic hairy roots. Furthermore, we found that the inoculation with rhizobium at 14 d of induction was able to enhance the contact between the bacteria and the transgenic hairy roots at early growth stages, and thus improved the soybean’s nodulation efficiency. Taken together, we successfully established a simple and efficient method to generate chimeric soybean plants with transgenic hairy roots. This method can be widely used in soybean gene functional studies.

参考文献

[1] 程凤娴, 曹桂芹, 王秀荣, 赵静, 严小龙, 廖红 (2008). 华南酸性低磷土壤中大豆根瘤菌高效株系的发现及应用. 科学通报 53, 2903-2910.
[2] 杜梦柯, 连文婷, 张晓, 李欣欣 (2021). 氮处理对大豆根瘤固氮能力及GmLbs基因表达的影响. 植物学报 56, 391-403.
[3] 李锦锦, 王昉, 张万科, 文自翔, 李海朝, 袁道华, 李金英, 张辉, 杨青华, 卢为国 (2012). 发根农杆菌介导不同基因型大豆转化效率的筛选. 河南农业科学 41(5), 37-41.
[4] 李欣欣, 赵静, 廖红 (2011). 大豆毛状根-VA菌根真菌双重培养体系的建立. 植物生理学报 47, 475-480.
[5] 栾健, 张斌, 胡钰 (2022). 中国大豆产业的发展态势、政策演进与趋势展望. 农业展望 18(8), 35-41.
[6] 邱丽娟, 王昌陵, 周国安, 陈受宜, 常汝镇 (2007). 大豆分子育种研究进展. 中国农业科学 40, 2418-2436.
[7] 田志喜, 刘宝辉, 杨艳萍, 李明, 姚远, 任小波, 薛勇彪 (2018). 我国大豆分子设计育种成果与展望. 中国科学院院刊 33, 915-922.
[8] Bahramnejad B, Naji M, Bose R, Jha S (2019). A critical review on use of Agrobacterium rhizogenes and their associated binary vectors for plant transformation. Biotechnol Adv 37, 107405.
[9] Cheng YY, Wang XL, Cao L, Ji J, Liu TF, Duan KX (2021). Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation for gene functional and gene editing analysis in soybean. Plant Methods 17, 73.
[10] Cho HJ, Farrand SK, Noel GR, Widholm JM (2000). High-efficiency induction of soybean hairy roots and propagation of the soybean cyst nematode. Planta 210, 195-204.
[11] Fan YL, Zhang XH, Zhong LJ, Wang XY, Jin LS, Lyu SH (2020). One-step generation of composite soybean plants with transgenic roots by Agrobacterium rhizogenes-mediated transformation. BMC Plant Biol 20, 208.
[12] Gantait S, Mukherjee E (2021). Hairy root culture technology: applications, constraints and prospect. Appl Microbiol Bio- technol 105, 35-53.
[13] Gomes C, Dupas A, Pagano A, Grima-Pettenati J, Paiva JAP (2019). Hairy root transformation: a useful tool to explore gene function and expression in Salix spp. recalcitrant to transformation. Front Plant Sci 10, 1427.
[14] Guo WB, Zhao J, Li XX, Qin L, Yan XL, Liao H (2011). A soybean β-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses. Plant J 66, 541-552.
[15] Herridge DF, Peoples MB, Boddey RM (2008). Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311, 1-18.
[16] Huang PH, Lu MY, Li XB, Sun HY, Cheng ZY, Miao YC, Fu YF, Zhang XM (2022). An efficient Agrobacterium rhizogenes-mediated hairy root transformation method in a soybean root biology study. Int J Mol Sci 23, 12261.
[17] Hungria M, Mendes IC (2015). Nitrogen fixation with soybean:the perfect symbiosis? In: de Bruijn FJ, ed. Biological Nitrogen Fixation. New Jersey: Wiley. pp. 1005-1019.
[18] Ke XL, Xiao H, Peng YQ, Wang J, Lv Q, Wang XL (2022). Phosphoenolpyruvate reallocation links nitrogen fixation rates to root nodule energy state. Science 378, 971-977.
[19] Kereszt A, Li DX, Indrasumunar A, Nguyen CDT, Nontachaiyapoom S, Kinkema M, Gresshoff PM (2007). Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat Protoc 2, 948-952.
[20] Kiryushkin AS, Ilina EL, Guseva ED, Pawlowski K, Demchenko KN (2021). Hairy CRISPR: genome editing in plants using hairy root transformation. Plants (Basel) 11, 51.
[21] Li R, Chen HF, Yang ZL, Yuan SL, Zhou XA (2020). Research status of soybean symbiosis nitrogen fixation. Oil Crop Sci 5, 6-10.
[22] Li XX, Zhao J, Tan ZY, Zeng RS, Liao H (2015). GmEXPB2, a cell wall β-expansin, affects soybean nodulation through modifying root architecture and promoting nodule formation and development. Plant Physiol 169, 2640-2653.
[23] Li XX, Zheng JK, Yang YQ, Liao H (2018). INCREASING NODULE SIZE1 expression is required for normal rhizobial symbiosis and nodule development. Plant Physiol 178, 1233-1248.
[24] Liu SL, Zhang M, Feng F, Tian ZX (2020). Toward a ‘‘green revolution’’ for soybean. Mol Plant 13, 688-697.
[25] Morey KJ, Peebles CAM (2022). Hairy roots: an untapped potential for production of plant products. Front Plant Sci 13, 937095.
[26] Olhoft PM, Flagel LE, Donovan CM, Somers DA (2003). Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216, 723-735.
[27] Pistelli L, Giovannini A, Ruffoni B, Bertoli A, Pistelli L (2010). Hairy root cultures for secondary metabolites production. Adv Exp Med Biol 698, 167-184.
[28] Qin L, Zhao J, Tian J, Chen LY, Sun ZA, Guo YX, Lu X, Gu M, Xu GH, Liao H (2012). The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean. Plant Physiol 159, 1634-1643.
[29] Wang T, Guo J, Peng YQ, Lyu X, Liu B, Sun SY, Wang XL (2021). Light-induced mobile factors from shoots regulate rhizobium-triggered soybean root nodulation. Science 374, 65-71.
[30] Wang XR, Wang YX, Tian J, Lim BL, Yan XL, Liao H (2009). Overexpressing AtPAP15enhances phosphorus efficiency in soybean. Plant Physiol 151, 233-240.
[31] Xu HY, Li YJ, Zhang KF, Li MJ, Fu SY, Tian YZ, Qin TF, Li XX, Zhong YJ, Liao H (2021). miR169c-NFYA-C-ENOD40 modulates nitrogen inhibitory effects in soybean nodulation. New Phytol 229, 3377-3392.
[32] Yang ZJ, Gao Z, Zhou HW, He Y, Liu YX, Lai YL, Zheng JK, Li XX, Liao H (2021). GmPTF1 modifies root architecture responses to phosphate starvation primarily through regulating GmEXPB2 expression in soybean. Plant J 107, 525-543.
[33] Zhang FL, Chen C, Ge HL, Liu JM, Luo YL, Liu K, Chen L, Xu KD, Zhang Y, Tan GX, Li CW (2014). Efficient soybean regeneration and Agrobacterium-mediated transformation using a whole cotyledonary node as an explant. Biotechnol Appl Biochem 61, 620-625.
文章导航

/