研究报告

外源有机酸对铝胁迫下菊芋生理响应系统的调控效应

展开
  • 1.浙江师范大学植物学实验室, 金华 321004
    2.杭州师范大学生命与环境科学学院, 杭州 310036
    3.中国科学院沈阳应用生态研究所, 沈阳 110016

收稿日期: 2023-01-15

  录用日期: 2023-03-08

  网络出版日期: 2023-03-10

基金资助

国家自然科学基金(32001224);国家自然科学基金(41571049);国家级大学生创新创业训练计划(202310345030)

Regulatory Effects of Exogenous Organic Acids on the Physiological Responses of Helianthus tuberosus Under Aluminium Stress

Expand
  • 1. Botany Laboratory, Zhejiang Normal University, Jinhua 321004, China
    2. College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
    3. Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China

Received date: 2023-01-15

  Accepted date: 2023-03-08

  Online published: 2023-03-10

摘要

铝(Al)是酸性土壤常见的金属污染物之一。为探明外源有机酸对铝胁迫下菊芋(Helianthus tuberosus)生理特征及根系DNA损伤的影响, 以耐铝品种徐州菊芋和铝敏感品种资阳菊芋为材料, 设置0、350和700 µmol∙L-1铝处理, 同时分别施加0、30、60和90 µmol∙L-1复合有机酸, 探究外源有机酸对铝胁迫下各时期(7、14和21天)菊芋生理响应和DNA损伤的影响。结果表明, 铝胁迫抑制菊芋根伸长与根系活力, 严重损害菊芋的光合机构与抗氧化系统, 随着铝浓度的增加, DNA拖尾程度升高, DNA受损加剧。而施加复合有机酸能有效缓解铝胁迫造成的损伤。施加60 µmol∙L-1有机酸可增强抗氧化酶活性, 提高最大光化学效率并促进根尖有机酸分泌, 其中柠檬酸分泌量分别比对照高2倍(徐州菊芋)及0.75倍(资阳菊芋), 根尖铝含量降低, 根系活力增强, 徐州菊芋和资阳菊芋DNA尾距较单独铝处理组下降51.53%和35.10%, 显著缓解DNA拖尾现象, 较大程度修复了DNA断裂。综上, 铝胁迫对菊芋造成的损害严重且较难缓解, 60 µmol∙L-1有机酸能增强低铝胁迫下菊芋生理响应, 降低DNA受损程度, 提高菊芋的抗逆性, 且在铝敏感品种资阳菊芋中缓解效果更好。该研究揭示了外源复合有机酸对铝胁迫下菊芋生理响应系统的调控作用, 可为菊芋等经济作物在南方酸铝地区的种植与生产提供理论依据。

本文引用格式

毛轩雯, 王志超, 阮心依, 孙靖菲, 张雅婷, 陆锦灏, 邵甜甜, 王娴, 肖佳敏, 肖莉, 叶梦瑶, 吴玉环, 刘鹏 . 外源有机酸对铝胁迫下菊芋生理响应系统的调控效应[J]. 植物学报, 2023 , 58(4) : 573 -589 . DOI: 10.11983/CBB23006

Abstract

Aluminum (Al) is one of the common metal contaminants in acidic soils. To reveal the effects of exogenous organic acids on the physiological characteristics and root DNA damage of Helianthus tuberosus under Al stress, we used Al resistant H. tuberosus cv. ‘Xuzhou’ and Al sensitive H. tuberosus cv. ‘Ziyang’ as materials. The effects of exogenous organic acids on the physiological responses and DNA damage of H. tuberosus at various periods (7, 14, and 21 d) under Al stress were investigated by setting 0, 350 and 700 µmol∙L-1 Al concentration treatments and applying 0, 30, 60 and 90 µmol∙L-1 compound organic acids, respectively. The results showed that Al stress inhibits root elongation and root activity, severely inhibited the photosynthetic and antioxidant systems of H. tuberosus, and the DNA damage in the root system increased with the increase of Al concentration. In contrast, the application of compound organic acid effectively alleviated Al stress. 60 µmol∙L-1 compound organic acid improved the activity of the antioxidant system, maximum photochemical efficiency and organic acid secretion in root tips, secretion of citric acid was 2 times (H. tuberosus cv. ‘Xuzhou’) and 0.75 times (H. tuberosus cv. ‘Ziyang’) higher than the control, reduced root tip Al content and improved root activity. Besides, H. tuberosus cv. ‘Xuzhou’ and H. tuberosus cv. ‘Ziyang’ oliver tail moment decreased by 51.53% and 35.10%, and compound organic acid reduced the DNA trailing phenomenon and repaired DNA breaks to a greater extent. In conclusion, high concentration of Al causes serious damage to H. tuberosus, which is difficult to mitigate. 60 µmol∙L-1 compound organic acid could enhance the H. tuberosus physiological responses under low Al stress, reduce DNA damage and thus improve the stress resistance. The alleviation effect was better in H. tuberosus cv. ‘Ziyang’. This study reveals the regulatory role of exogenous organic acids on the physiological responses of H. tuberosus under Al stress, and provides a theoretical basis for planting and production of H. tuberosus and production of other cash crops in the acid-aluminium areas of southern China.

参考文献

[1] 曹林, 吴玉环, 章艺, 郭怡, 肖有铁, 郦枫, 马丽, 徐根娣, 刘鹏 (2015). 外源水杨酸对铝胁迫下菊芋光合特性及耐铝性的影响. 水土保持学报 29, 260-266.
[2] 陈昌, 宋颖华, 高晓强 (2010). 干法消解与湿法消解测定紫菜中铝含量. 食品安全质量检测学报 27(3), 118-123.
[3] 程晓晴, 方婷玉, 李凤杰, 安渊, 周鹏 (2020). 喷施水杨酸对铝胁迫紫花苜蓿幼苗光合作用和光化学系统的影响. 中国草地学报 42(4), 42-49.
[4] 邓晓霞, 李月明, 姚堃姝, 乔婧文, 王竞红, 蔺吉祥 (2022). 植物适应酸铝胁迫机理的研究进展. 生物工程学报 38, 2754-2766.
[5] 郜红建, 常江, 张自立, 丁士明, 魏俊岭 (2003). 研究植物根系分泌物的方法. 植物生理学通讯 39, 56-60.
[6] 郭书亚, 艾金祥, 陈虹宇, 邵烨瑶, 汪妍, 王倩, 叶怡彤, 张雅婷, 丁哲晓, 吴昊辰, 吴玉环�张建新, 饶米德, 刘鹏 (2022). 基于主成分-聚类-逐步回归分析构建番茄苗期耐铝性综合评价体系. 植物学报 57, 479-489.
[7] 郭炜 (2008). 紫外辐照导致植物细胞DNA损伤的彗星电泳检测及生理指标的测定. 硕士论文. 济南: 山东大学. pp. 1-89.
[8] 胡文海, 胡雪华, 闫小红, 周升团 (2021). 低温胁迫及恢复对番茄快速叶绿素荧光诱导动力学特征的影响. 中国农业气象 42, 859-869.
[9] 胡文海, 叶子飘, 闫小红, 杨旭升 (2017). 越冬期广玉兰阳生叶和阴生叶PSII功能及捕光色素分子内禀特性的比较研究. 植物研究 37, 281-287.
[10] 李合生 (2000). 植物生理生化实验原理和技术. 北京: 高等教育出版社. pp. 195-197.
[11] 李青容, 陈建军, 祖艳群, 何永美, 湛方栋, 李博, 李元 (2022). 酸性农田土壤改良效果综合评价指标体系的构建及验证. 农业环境科学学报 41, 547-558.
[12] 刘晓龙, 季平, 杨洪涛, 丁永电, 付佳玲, 梁江霞, 余聪聪 (2022). 脱落酸对水稻抽穗开花期高温胁迫的诱抗效应. 植物学报 57, 596-610.
[13] 钱莲文, 李清彪, 孙境蔚, 冯莹 (2018). 铝胁迫下常绿杨根系有机酸和氨基酸的分泌. 厦门大学学报(自然科学版) 57, 221-227.
[14] 沈仁芳, 赵学强 (2019). 酸性土壤可持续利用. 农学学报 9(3), 16-20.
[15] 孙琴, 倪吾钟, 杨肖娥 (2002). 有机酸在植物解铝毒中的作用及生理机制. 植物学通报 19, 496-503.
[16] 唐宏亮, 申建波, 张福锁, Rengel Z (2013). 磷和外源生长素对白羽扇豆(Lupinus albus L.)根形态和生理特性的影响. 中国科学: 生命科学 43, 201-212.
[17] 王浩, 王明, 梁婷, 姚玉新, 杜远鹏, 高振 (2022). 气温和根区温度对葡萄叶片光合荧光特性的影响. 植物学报 57, 209-216.
[18] 王亚校, 王子岚, 孙然, 杜克久 (2019). Aroclor1242暴露对荻组培苗不定根分化的影响. 林业与生态科学 34, 308-313.
[19] 魏志琴, 陈志勇, 秦蓉, 王宇涛, 李韶山 (2013). Cu2+对拟南芥根的局部毒性及诱导DNA损伤和细胞死亡. 植物学报 48, 303-312.
[20] 伍自力, 余孟瑶, 陈露, 魏静, 王晓琴, 胡勇, 闫妍, 万平 (2015). 小立碗藓对重金属镉胁迫的应答特征. 植物学报 50, 171-179.
[21] 熊洁, 丁戈, 李书宇, 陈伦林, 宋来强 (2020). 铝胁迫对不同耐铝油菜品种苗期生长发育和养分吸收的影响. 华北农学报 35(6), 165-171.
[22] 许馨露, 李丹丹, 马元丹, 翟建云, 孙建飞, 高岩, 张汝民 (2018). 四季桂抗氧化防御系统对干旱、高温及协同胁迫的响应. 植物学报 53, 72-81.
[23] 余倩, 段雷, 郝吉明 (2021). 中国酸沉降: 来源、影响与控制. 环境科学学报 41, 731-746.
[24] 张婷婷, 刘子凡, 安锋, 谢贵水 (2020). 铝胁迫造成橡胶苗死亡的机制研究. 热带作物学报 41, 2439-2445.
[25] 张云, 王丹媚, 王孝源, 任晴雯, 唐可, 张丽宇, 吴玉环, 刘鹏 (2021). 外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响. 作物学报 47, 2490-2500.
[26] 郑开敏, 肖家昶, 马俊英, 贺茂林, 格桑, 郑阳霞 (2022). 柠檬酸对铝胁迫下豆瓣菜生长及生理的影响. 江苏农业学报 38, 476-485.
[27] 周谷, 李秧秧, 樊军 (2023). 利用植物气体交换参数确定萎蔫系数的方法. 土壤学报 60, 776-786.
[28] 周蜜, 吴玉环, 刘星星, 陈娇, 郑婷, 章嗣瑶, 李江雯, 李润桥, 刘鹏 (2019). 镉胁迫对菊芋生理变化及镉富集的影响. 水土保持学报 33, 323-330.
[29] 周小华, 李昆志, 赵峥, 张小玲, 程霞, 冯庆 (2021). 外源抗坏血酸对水稻抗铝生理指标的影响. 热带作物学报 42, 769-776.
[30] Alasfar RH, Isaifan RJ (2021). Aluminum environmental pollution: the silent killer. Environ Sci Pollut Res Int 28, 44587-44597.
[31] Chen ZC, Liao H (2016). Organic acid anions: an effective defensive weapon for plants against aluminum toxicity and phosphorus deficiency in acidic soils. J Genet Genomics 43, 631-638.
[32] Diarra I, Kotra KK, Prasad S (2022). Application of phytoremediation for heavy metal contaminated sites in the South Pacific: strategies, current challenges and future prospects. Appl Spectrosc Rev 57, 490-512.
[33] Dos Reis AR, Lisboa LAM, Reis HPG, De Queiroz Barcelos JP, Santos EF, Santini JMK, Meyer-Sand BRV, Putti FF, Galindo FS, Kaneko FH, Barbosa JZ, Paix?o AP, Junior EF, De Figueiredo PAM, Lavres J (2018). Depicting the physiological and ultrastructural responses of soybean plants to Al stress conditions. Plant Physiol Biochem 130, 377-390.
[34] Guo MX, Zhang XT, Liu JJ, Hou LL, Liu HX, Zhao XS (2020). OsProDH negatively regulates thermotolerance in rice by modulating proline metabolism and reactive oxygen species scavenging. Rice 13, 61.
[35] Guo P, Qi YP, Cai YT, Yang TY, Yang LT, Huang ZR, Chen LS (2018). Aluminum effects on photosynthesis, reactive oxygen species and methylglyoxal detoxification in two Citrus species differing in aluminum tolerance. Tree Physiol 38, 1548-1565.
[36] Hartmann H, Link RM, Schuldt B (2021). A whole-plant perspective of isohydry: stem-level support for leaf-level plant water regulation. Tree Physiol 41, 901-905.
[37] Igamberdiev AU, Bykova NV (2018). Role of organic acids in the integration of cellular redox metabolism and mediation of redox signaling in photosynthetic tissues of higher plants. Free Radical Biol Med 122, 74-85.
[38] Jaskulak M, Grobelak A, Grosser A, Vandenbulcke F (2019). Gene expression, DNA damage and other stress markers in Sinapis alba L. exposed to heavy metals with special reference to sewage sludge application on contaminated sites. Ecotoxicol Environ Saf 181, 508-517.
[39] Koppen G, Verschaeve L (1996). The alkaline comet test on plant cells: a new genotoxicity test for DNA strand breaks in Vicia faba root cells. Mutat Res 360, 193-200.
[40] Liu WJ, Xu FJ, Lv T, Zhou WW, Chen Y, Jin CW, Li LL, Lin XY (2018). Spatial responses of antioxidative system to aluminum stress in roots of wheat (Triticum aestivum L.) plants. Sci Total Environ 627, 462-469.
[41] Luo J, Qi SH, Gu XWS, Wang JL, Xie XM (2016). An evaluation of EDTA additions for improving the phytoremediation efficiency of different plants under various cultivation systems. Ecotoxicology 25, 646-654.
[42] Park YM, Yeon KM, Park CH (2020). Silica treatment technologies in reverse osmosis for industrial desalination: a review. Environ Eng Res 25, 819-829.
[43] Pattanayak A, Pfukrei K (2013). Aluminium toxicity tolerance in crop plants: present status of research. Afr J Biotechnol 12, 3752-3757.
[44] Pimenta LS, Mariano EDA, Gazaffi R, Carneiro MS (2020). Crescimento radicular e resposta de enzimas antioxidantes ao estresse por alumínio em cana-de-a?úcar. Semina: Ciências Agrárias 41(Supl),3449-3456.
[45] Rahman R, Upadhyaya H (2021). Aluminium toxicity and its tolerance in plant: a review. J Plant Biol 64, 101-121.
[46] Rao LY, Li SY, Cui X (2021). Leaf morphology and chlorophyll fluorescence characteristics of mulberry seedlings under waterlogging stress. Sci Rep 11, 13379.
[47] Riaz M, Yan L, Wu XW, Hussain S, Aziz O, Jiang CC (2018). Mechanisms of organic acids and boron induced tolerance of aluminum toxicity: a review. Ecotoxicol Environ Saf 165, 25-35.
[48] Singh S, Tripathi DK, Singh S, Sharma S, Dubey NK, Chauhan DK, Vaculík M (2017). Toxicity of aluminium on various levels of plant cells and organism: a review. Environ Exp Bot 137, 177-193.
[49] Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK (2017). Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110, 70-81.
[50] Wu WQ, Ueda H, L?bmann K, Rades T, Grohganz H (2018). Organic acids as co-formers for co-amorphous systems—influence of variation in molar ratio on the physicochemical properties of the co-amorphous systems. Eur J Pharm Biopharm 131, 25-32.
[51] Yang Y, Ma L, Zeng H, Chen LY, Zheng Y, Li CX, Yang ZP, Wu N, Mu X, Dai CY, Guan HL, Cui XM, Liu Y (2018). iTRAQ-based proteomics screen for potential regulators of wheat (Triticum aestivum L.) root cell wall component response to Al stress. Gene 675, 301-311.
[52] Yun T, An F, Li WZ, Sun Y, Cao L, Xue LF (2016). A novel approach for retrieving tree leaf area from ground-based LiDAR. Remote Sens 8, 942.
[53] Zhou Y, Liu ZY, Yao MD, Chen J, Xiao YN, Han GY, Shen JR, Wang FJ (2022). Elucidating the molecular mechanism of dynamic photodamage of photosystem II membrane protein complex by integrated proteomics strategy. CCS Chem 4, 182-193.
文章导航

/

674-3466/bottom_cn.htm"-->