专题论坛

植物GH3基因家族生物学功能研究进展

展开
  • 1.内蒙古师范大学生命科学与技术学院, 呼和浩特 010022
    2.内蒙古大学生命科学学院, 牧草与特色作物生物学教育部重点实验室, 内蒙古自治区牧草与特色作物生物技术重点实验室, 呼和浩特 010000

收稿日期: 2022-11-17

  录用日期: 2023-02-13

  网络出版日期: 2023-02-20

基金资助

国家自然科学基金(32060451);内蒙古自然科学基金(2022ZD11);内蒙古自治区应用技术研究与开发基金(2021-PT0001)

Research Advances in Biological Functions of GH3 Gene Family in Plants

Expand
  • 1. College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot 010022, China
    2. Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China

Received date: 2022-11-17

  Accepted date: 2023-02-13

  Online published: 2023-02-20

摘要

植物生长素早期响应基因GH3编码的酰胺合酶催化生长素、茉莉酸及苯甲酸衍生物与氨基酸结合, 形成相应的氨基酸复合物。当植物体内生长素浓度过高时, GH3蛋白催化生长素与氨基酸结合, 形成的复合物作为生长素贮存库。当生长素浓度过低时, 生长素-氨基酸复合物被蛋白水解酶水解为生长素, 重新参与生长素信号通路, 从而调控植物体内生长素动态平衡。当植物受到生物或非生物胁迫时, GH3蛋白催化茉莉酸和水杨酸与氨基酸结合, 参与植物胁迫响应。该文从GH3蛋白结构、GH3基因家族分类及其生物学功能方面总结了双子叶模式植物拟南芥(Arabidopsis thaliana)、单子叶模式植物水稻(Oryza sativa)及其它植物中GH3基因的研究进展, 为植物GH3基因家族的深入研究提供参考。

本文引用格式

园园, 恩和巴雅尔, 齐艳华 . 植物GH3基因家族生物学功能研究进展[J]. 植物学报, 2023 , 58(5) : 770 -782 . DOI: 10.11983/CBB22263

Abstract

The amide-synthase encoded by the auxin early response gene GH3 in plants could catalyze the combination of auxin, jasmonic acid and benzoic acid derivatives with amino acids respectively to form the corresponding amino acid complex. Under the high auxin concentration in plants, GH3 protein catalyzes the combination of auxin and amino acid, which acts as the auxin sink in plants. Under the low auxin concentration, the auxin-amino acid complex is hydrolyzed to auxin by proteolytic enzymes and re-participates in the auxin signaling pathway, thus regulating the dynamic balance of auxin levels in plants. When plants are subjected to biological or abiotic stress, GH3 protein catalyzes jasmonic acid and salicylic acid to bind to amino acids and participate in plant stress response. In this study, we summarized the research progress of GH3 gene in dicotyledonous model plant Arabidopsis thaliana, monocotyledonous model plant rice, and the other plants from the aspects of GH3 protein structure, GH3 gene family classification and its function, and provided some references for further study of GH3 gene family in plants.

参考文献

[1] 艾国 (2017). 番茄SlGH3-15基因的功能解析. 硕士论文. 武汉: 华中农业大学. pp. 7-8.
[2] 陈潇 (2017). 番茄吲哚-3-乙酸氨基合成酶基因SlGH3.4在丛枝菌根共生中的功能和调控机制研究. 博士论文. 南京: 南京农业大学. pp. 62-63.
[3] 李超, 牛宇鹏, 吴俊彩 (2021). 马铃薯生全粉护色工艺研究. 安徽农业科学 49, 188-190.
[4] 黎家, 李传友 (2019). 新中国成立70年来植物激素研究进展. 中国科学: 生命科学 49, 1227-1281.
[5] 李梦莎, 阎秀峰 (2014). 植物的环境信号分子茉莉酸及其生物学功能. 生态学报 34, 6779-6788.
[6] 刘晓东, 王若仲, 焦彬彬, 代培红, 李月 (2016). 拟南芥IAA酰胺合成酶GH3-6负调控干旱和盐胁迫的反应. 植物学报 51, 586-593.
[7] 庞少萍, 谢让金, 马岩岩, 钱春, 何绍兰, 易时来, 吕强, 郑永强, 邓烈 (2015). 柑橘CjGH3.4CjGH3.7基因的生物信息学分析及表达分析. 园艺学报 42, 2362-2372.
[8] 王慧敏 (2015). 番茄SlGH3.2的表达特征及在水稻中的功能研究分析. 硕士论文. 南京: 南京农业大学. pp. 6-7.
[9] 谢小芳, 黄勤怡, 吴为人 (2010). 植物GH3基因家族的生物信息学分析. 基因组学与应用生物学 29, 829-837.
[10] 张超 (2021). 茉莉酸调控基因GH3家族的鉴定及在马铃薯中抗病及损伤分析. 博士论文. 杨凌: 西北农林科技大学. pp. 26-62.
[11] 周苹, 唐冬英, 郭明, 谭振华, 赵小英, 刘选明 (2015). 拟南芥GH3.9基因的过表达及其表型分析. 西北植物学报 35, 454-458.
[12] 周淑瑶, 李建明, 毛娟 (2023). AtGH3.17调控拟南芥生长素和油菜素甾醇的响应. 植物学报 58, 373-384.
[13] 邹修平, 龙俊宏, 彭爱红, 陈敏, 龙琴, 陈善春 (2019). 超量表达CsGH3.6通过抑制生长素信号转导增强柑橘溃疡病抗性. 中国农业科学 52, 3806-3818.
[14] Bierfreund NM, Tintelnot S, Reski R, Decker EL (2004). Loss of GH3 function does not affect phytochrome-mediated development in a moss, Physcomitrella patens. J Plant Physiol 161, 823-835.
[15] Chang KH, Xiang H, Dunaway-Mariano D (1997). Acyladenylate motif of the acyl-adenylate/thioester-forming enzyme superfamily: a site-directed mutagenesis study with the Pseudomonas sp. strain CBS3 4-chlorobenzoate: coenzyme A ligase. Biochemistry 36, 15650-15659.
[16] Chen CY, Ho SS, Kuo TY, Hsieh HK, Cheng YS (2017). Structural basis of jasmonate-amido synthetase FIN219 in complex with glutathione S-transferase FIP1 during the JA signal regulation. Proc Natl Acad Sci USA 114, E1815- E1824.
[17] Chen M, He YR, Xu LZ, Peng AH, Lei TG, Yao LX, Li Q, Zhou PF, Bai XJ, Duan MJ, Jiang XY, Jia RR, Zou XP, Chen SC (2016). Cloning and expression analysis of citrus genes CsGH3.1 and CsGH3.6 responding to Xanthomonas axonopodis pv. citri infection. Hortic Plant J 2, 193-202.
[18] Conner TW, Goekjian VH, La Fayette PR, Key JL (1990). Structure and expression of two auxin-inducible genes from Arabidopsis. Plant Mol Biol 15, 623-632.
[19] Dai ZY, Wang J, Yang XF, Lu H, Miao XX, Shi ZY (2018). Modulation of plant architecture by the miR156f-OsSPL7- OsGH3.8 pathway in rice. J Exp Bot 69, 5117-5130.
[20] Ding CH, Lin XH, Zuo Y, Yu ZL, Baerson SR, Pan ZQ, Zeng RS, Song YY (2021). Transcription factor OsbZIP49 controls tiller angle and plant architecture through the induction of indole-3-acetic acid-amido synthetases in rice. Plant J 108, 1346-1364.
[21] Ding XH, Cao YL, Huang LL, Zhao J, Xu CG, Li XH, Wang SP (2008). Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20, 228-240.
[22] Domingo C, Andrés F, Tharreau D, Iglesias DJ, Talón M (2009). Constitutive expression of OsGH3.1 reduces auxin content and enhances defense response and resistance to a fungal pathogen in rice. Mol Plant Microbe Interact 22, 201-210.
[23] Du H, Wu N, Fu J, Wang SP, Li XH, Xiao JH, Xiong LZ (2012). A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. J Exp Bot 63, 6467-6480.
[24] Fu J, Yu HH, Li XH, Xiao JH, Wang SP (2011). Rice GH3 gene family: regulators of growth and development. Plant Signal Behav 6, 570-574.
[25] Gulick AM (2009). Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. ACS Chem Biol 4, 811-827.
[26] Hagen G, Guilfoyle T (2002). Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49, 373-385.
[27] Hagen G, Guilfoyle TJ (1985). Rapid induction of selective transcription by auxins. Mol Cell Biol 5, 1197-1203.
[28] Hagen G, Kleinschmidt A, Guilfoyle T (1984). Auxin-regulated gene expression in intact soybean hypocotyl and excised hypocotyl sections. Planta 162, 147-153.
[29] Hsieh HL, Okamoto H, Wang ML, Ang LH, Matsui M, Goodman H, Deng XW (2000). FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Dev 14, 1958-1970.
[30] Hui SG, Hao MY, Liu HB, Xiao JH, Li XH, Yuan M, Wang SP (2019). The group I GH3 family genes encoding JA-Ile synthetase act as positive regulator in the resistance of rice to Xanthomonas oryzae pv. oryzae. Biochem Biophys Res Commun 508, 1062-1066.
[31] Jagadeeswaran G, Raina S, Acharya BR, Maqbool SB, Mosher SL, Appel HM, Schultz JC, Klessig DF, Raina R (2007). Arabidopsis GH3-LIKE DEFENSE GENE 1is required for accumulation of salicylic acid, activation of defense responses and resistance to Pseudomonas syringae. Plant J 51, 234-246.
[32] Jiang WQ, Yin JL, Zhang HT, He YQ, Shuai SM, Chen SH, Cao SL, Li W, Ma DF, Chen HG (2020). Genome-wide identification, characterization analysis and expression profiling of auxin-responsive GH3 family genes in wheat (Triticum aestivum L.). Mol Biol Rep 47, 3885-3907.
[33] Khan S, Stone JM (2007). Arabidopsis thaliana GH3.9 influences primary root growth. Planta 226, 21-34.
[34] Kumar R, Agarwal P, Tyagi AK, Sharma AK (2012). Genome-wide investigation and expression analysis suggest diverse roles of auxin-responsive GH3 genes during development and response to different stimuli in tomato (Solanum lycopersicum). Mol Genet Genom 287, 221-235.
[35] Lee HM, Park JS, Kim SJ, Kim SG, Park YD (2022). Using transcriptome analysis to explore gray mold resistance- related genes in onion (Allium cepa L.). Genes (Basel) 13, 542.
[36] Liu CC, Liu YN, Cheng JF, Guo R, Tian L, Wang B (2022). Dual roles of OsGH3.2 in modulating rice root morphology and affecting arbuscular mycorrhizal symbiosis. Front Plant Sci 13, 853435.
[37] Liu KD, Kang BC, Jiang H, Moore SL, Li HX, Watkins CB, Setter TL, Jahn MM (2005). A GH3-like gene, CcGH3, isolated from Capsicum chinense L. fruit is regulated by auxin and ethylene. Plant Mol Biol 58, 447-464.
[38] Liu ZB, Ulmasov T, Shi X, Hagen G, Guilfoyle TJ (1994). Soybean GH3 promoter contains multiple auxin-inducible elements. Plant Cell 6, 645-657.
[39] Lowder LG, Paul III JW, Qi YP (2017). Multiplexed transcriptional activation or repression in plants using CRISPR- dCas9-based systems. In: Kaufmann K, Mueller-Roeber B, eds. Plant Gene Regulatory Networks. New York: Humana Press. pp. 167-184.
[40] Lowder LG, Zhou JP, Zhang YX, Malzahn A, Zhong ZH, Hsieh TF, Voytas DF, Zhang Y, Qi YP (2018). Robust transcriptional activation in plants using multiplexed CRISPR-Act2.0 and mTALE-act systems. Mol Plant 11, 245-256.
[41] Mallory AC, Bartel DP, Bartel B (2005). MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR 17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17, 1360-1375.
[42] McNellis TW, von Arnim AG, Deng XW (1994). Overexpression of Arabidopsis COP1 results in partial suppression of light-mediated development: evidence for a light- inactivable repressor of photomorphogenesis. Plant Cell 6, 1391-1400.
[43] Nakazawa M, Yabe N, Ichikawa T, Yamamoto YY, Yoshizumi T, Hasunuma K, Matsui M (2001). DFL1, an auxin-responsive GH3gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. Plant J 25, 213-221.
[44] Nobuta K, Okrent RA, Stoutemyer M, Rodibaugh N, Kempema L, Wildermuth MC, Innes RW (2007). The GH3 acyl adenylase family member PBS3 regulates salicylic acid-dependent defense responses in Arabidopsis. Plant Physiol 144, 1144-1156.
[45] Okrent RA, Brooks MD, Wildermuth MC (2009). Arabidopsis GH3.12 (PBS3) conjugates amino acids to 4-substituted benzoates and is inhibited by salicylate. J Biol Chem 284, 9742-9754.
[46] Osterlund MT, Ang LH, Deng XW (1999). The role of COP1 in repression of Arabidopsis photomorphogenic development. Trends Cell Biol 9, 113-118.
[47] Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C, Sandermann H, Kangasj?rvi J (2000). Ozone- sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell 12, 1849-1862.
[48] Park JE, Park JY, Kim YS, Staswick PE, Jeon J, Yun J, Kim SY, Kim J, Lee YH, Park CM (2007a). GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282, 10036-10046.
[49] Park JE, Seo PJ, Lee AK, Jung JH, Kim YS, Park CM (2007b). An Arabidopsis GH3 gene, encoding an auxin- conjugating enzyme, mediates phytochrome B-regulated light signals in hypocotyl growth. Plant Cell Physiol 48, 1236-1241.
[50] Qin GJ, Gu HY, Zhao YD, Ma ZQ, Shi GL, Yang Y, Pichersky E, Chen HD, Liu MH, Chen ZL, Qu LJ (2005). An indole-3-acetic acid carboxyl methyltransferase regulates Arabidopsis leaf development. Plant Cell 17, 2693-2704.
[51] Qiu DY, Xiao J, Ding XH, Xiong M, Cai M, Cao YL, Li XH, Xu CG, Wang SP (2007). OsWRKY13mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Mol Plant Microbe Interact 20, 492-499.
[52] Rao MV, Lee H, Creelman RA, Mullet JE, Davis KR (2000). Jasmonic acid signaling modulates ozone-induced hypersensitive cell death. Plant Cell 12, 1633-1646.
[53] Riemann M, Riemann M, Takano M (2008). Rice JASMONATE RESISTANT 1is involved in phytochrome and jasmonate signaling. Plant Cell Environ 31, 783-792.
[54] Round A, Brown E, Marcellin B, Kapp U, Westfall CS, Jez JM, Zubieta C (2013). Determination of the GH3.12 protein conformation through HPLC-integrated SAXS measurements combined with X-ray crystallography. Acta Crystallogr Sect D Biol Crystallogr 69, 2072-2080.
[55] Sherp AM, Westfall CS, Alvarez S, Jez JM (2018). Arabidopsis thaliana GH3.15 acyl acid amido synthetase has a highly specific substrate preference for the auxin precursor indole-3-butyric acid. J Biol Chem 293, 4277-4288.
[56] Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005). Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17, 616-627.
[57] Staswick PE, Tiryaki I, Rowe ML (2002). Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3- acetic acids in an assay for adenylation. Plant Cell 14, 1405-1415.
[58] Staswick PE, Yuen GY, Lehman CC (1998). Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregular. Plant J 15, 747-754.
[59] Sun MH, Li H, Li YB, Xiang HZ, Liu YD, He Y, Qi MF, Li TL (2020). Tomato YABBY2b controls plant height through regulating indole-3-acetic acid-amido synthetase (GH3.8) expression. Plant Sci 297, 110530.
[60] Takase T, Nakazawa M, Ishikawa A, Kawashima M, Ichikawa T, Takahashi N, Shimada H, Manabe K, Matsui M (2004). ydk1-D, an auxin-responsive GH3 mutant that is involved in hypocotyl and root elongation. Plant J 37, 471-483.
[61] Takase T, Nakazawa M, Ishikawa A, Manabe K, Matsui M (2003). DFL2, a new member of the Arabidopsis GH3gene family, is involved in red light-specific hypocotyl elongation. Plant Cell Physiol 44, 1071-1080.
[62] Tao Z, Liu HB, Qiu DY, Zhou Y, Li XH, Xu CG, Wang SP (2009). A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions. Plant Physiol 151, 936-948.
[63] Terol J, Domingo C, Talón M (2006). The GH3 family in plants: genome wide analysis in rice and evolutionary history based on EST analysis. Gene 371, 279-290.
[64] Ulmasov T, Hagen G, Guilfoyle TJ (1997). ARF1, a transcription factor that binds to auxin response elements. Science 276, 1865-1868.
[65] Ulmasov T, Liu ZB, Hagen G, Guilfoyle TJ (1995). Composite structure of auxin response elements. Plant Cell 7, 1611-1623.
[66] van Loon LC, Bakker PAHM, Pieterse CMJ (1998). Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36, 453-483.
[67] Wasternack C, Hause B (2013). Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111, 1021-1058.
[68] Westfall CS, Herrmann J, Chen QF, Wang P, Jez JM (2010). Modulating plant hormones by enzyme action: the GH3 family of acyl acid amido synthetases. Plant Signal Behav 5, 1607-1612.
[69] Westfall CS, Zubieta C, Herrmann J, Kapp U, Nanao MH, Jez JM (2012). Structural basis for prereceptor modulation of plant hormones by GH3 proteins. Science 336, 1708-1711.
[70] Wojtaczka P, Ciarkowska A, Starzynska E, Ostrowski M (2022). The GH3 amidosynthetases family and their role in metabolic crosstalk modulation of plant signaling compounds. Phytochemistry 194, 113039.
[71] Woodward AW, Bartel B (2005). Auxin: regulation, action, and interaction. Ann Bot 95, 707-735.
[72] Xie KB, Minkenberg B, Yang YN (2015). Boosting CRISPR/ Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA 112, 3570-3575.
[73] Xu F, He SB, Zhang JY, Mao ZL, Wang WX, Li T, Hua J, Du SS, Xu PB, Li L, Lian HL, Yang HQ (2018). Photoactivated CRY1 and phyB interact directly with AUX/IAA proteins to inhibit auxin signaling in Arabidopsis. Mol Plant 11, 523-541.
[74] Yan JB, Yao RF, Chen L, Li SH, Gu M, Nan FJ, Xie DX (2018). Dynamic perception of jasmonates by the F-box protein COI1. Mol Plant 11, 1237-1247.
[75] Yang JH, Han SJ, Yoon EK, Lee WS (2006). Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells. Nucleic Acids Res 34, 1892-1899.
[76] Zhang SN, Wang SK, Xu YX, Yu CL, Shen CJ, Qian Q, Geisler M, Jiang DA, Qi YH (2015). The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1. Plant Cell Environ 38, 638-654.
[77] Zhang SW, Li CH, Cao J, Zhang YC, Zhang SQ, Xia YF, Sun DY, Sun Y (2009). Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation. Plant Physiol 151, 1889-1901.
[78] Zhang ZQ, Li Q, Li ZM, Staswick PE, Wang MY, Zhu Y, He ZH (2007). Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction. Plant Physiol 145, 450-464.
[79] Zhang ZQ, Wang MY, Li ZM, Li Q, He ZH (2008). Arabidopsis GH3.5 regulates salicylic acid-dependent and both NPR1-dependent and independent defense responses. Plant Signal Behav 3, 537-542.
[80] Zhao SQ, Xiang JJ, Xue HW (2013). Studies on the rice LEAF INCLINATION 1 (LC1), an IAA-amido synthetase, reveal the effects of auxin in leaf inclination control. Mol Plant 6, 174-187.
文章导航

/