普通菜豆镰孢菌枯萎病抗性种质资源筛选及全基因组关联分析
收稿日期: 2022-07-12
录用日期: 2023-02-09
网络出版日期: 2023-02-10
基金资助
国家重点研发计划(2020YFD1000800);国家重点研发计划(2020YFD1000802-01);国家食用豆产业技术体系(CARS-08)
Screening of Resistance Germplasm Resources and Genome-wide Association Study of Fusarium Wilt in Common Bean
Received date: 2022-07-12
Accepted date: 2023-02-09
Online published: 2023-02-10
普通菜豆镰孢菌枯萎病是严重制约菜豆(Phaseolus vulgaris)产量的主要病害之一。采用下胚轴双孔注射法对601份普通菜豆种质资源进行枯萎病抗性鉴定, 共筛选出4份高抗材料。在此基础上, 基于分布在全基因组上的3 765 456个单核苷酸多态性(SNP)标记, 进行全基因组关联分析, 以P<1×10-5为阈值。结果检测到57个显著关联的SNP位点, 分布于1、2、6、8和11号染色体上; 共获得8个显著关联区域, 其中位于1号染色体上的区域1包含SNP最多(48个), 最显著SNP P值为2.18E-07。在8个显著关联区域中, 共检测到186个基因, 其中157个基因有注释信息, 编码过氧化物酶、抗病蛋白、转录因子和蛋白激酶等。结合KEGG富集分析和序列同源性比对, 鉴定出9个候选基因可能与抗性相关。
李园, 常玉洁, 王兰芬, 王述民, 武晶 . 普通菜豆镰孢菌枯萎病抗性种质资源筛选及全基因组关联分析[J]. 植物学报, 2023 , 58(1) : 51 -61 . DOI: 10.11983/CBB22149
Fusarium wilt is one of the main diseases that seriously restrict the yield of common bean in China. In this study, the hypocotyl double hole injection method was used to identify the resistance of 601 common bean germplasm resources to fusarium wilt, and 4 highly resistance materials were screened out. Based on 3 765 456 single nucleotide polymorphisms (SNPs) distributed on the whole genome, the genome-wide association study was conducted with P<1×10-5 as the threshold. A total of 57 significant SNPs were detected, which are distributed on chromosomes 1, 2, 6, 8, and 11 respectively. A total of 8 significant associated regions were obtained, of which region 1 on chromosome 1 contained up to 48 SNPs and the most significant SNP P value was 2.18E-07. Furthermore, 186 genes were detected in 8 significant association regions, of which 157 were annotated genes, including encoding peroxidase, disease resistance protein, transcription factor and protein kinase genes. Combing KEGG enrichment analysis and homology comparison, 9 candidate genes were identified that might be related to resistance.
[1] | 程须珍 (2016). 普通菜豆生产技术. 北京: 北京教育出版社. pp. 83-84. |
[2] | 薛仁风 (2012). 普通菜豆镰孢菌枯萎病抗病种质鉴定及抗病机理研究. 博士论文. 北京: 中国农业科学院. pp. 37-40. |
[3] | 薛仁风, 丰明, 赵阳, 陈剑, 李韬, 葛维德 (2019). 普通菜豆生长素调节蛋白基因PvARP1的克隆及表达分析. 河南农业科学 48(9), 82-89. |
[4] | 薛仁风, 朱振东, 王晓鸣, 王兰芬, 武小菲, 王述民 (2012). 普通菜豆镰孢菌枯萎病抗病相关基因PvCaM1的克隆及表达. 作物学报 38, 606-613. |
[5] | Alves-Santos FM, Cordeiro-Rodrigues L, Sayagués JM, Martín-Domínguez R, García-Benavides P, Crespo MC, Díaz-Mínguez JM, Eslava AP (2002). Pathogenicity and race characterization of Fusarium oxysporum f. sp. phaseoli isolates from Spain and Greece. Plant Pathol 51, 605-611. |
[6] | Banco? S, Nomura T, Sato T, Molnár G, Bishop GJ, Koncz C, Yokota T, Nagy F, Szekeres M (2002). Regulation of transcript levels of the Arabidopsis cytochrome p450 genes involved in brassinosteroid biosynthesis. Plant Physiol 130, 504-513. |
[7] | Batista RO, Silva LC, Moura LM, Souza MH, Carneiro PCS, Filho JLSC, de Souza Carneiro JE (2017). Inheritance of resistance to fusarium wilt in common bean. Euphytica 213, 133. |
[8] | Belkhadir Y, Subramaniam R, Dangl JL (2004). Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr Opin Plant Biol 7, 391-399. |
[9] | Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt R, Giraudat J, Leung J, Staskawicz BJ (1994). RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science 265, 1856-1860. |
[10] | Bolwell GP, Bozak K, Zimmerlin A (1994). Plant cytochrome P450. Phytochemistry 37, 1491-1506. |
[11] | Boyes DC, Nam J, Dangl JL (1998). The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. Proc Natl Acad Sci USA 95, 15849-15854. |
[12] | Brick MA, Ogg JB, Schwartz HF, Byrne PF, Kelly JD (2006). Resistance to multiple races of Fusarium oxysporum f. sp. phaseoli in common bean. Annu Rep Bean Improv Coop 47, 131-132. |
[13] | Chen YC, Wong CL, Muzzi F, Vlaardingerbroek I, Kidd BN, Schenk PM (2014). Root defense analysis against Fusarium oxysporum reveals new regulators to confer resistance. Sci Rep 4, 5584. |
[14] | Cross H, Brick MA, Schwartz HF, Panella LW, Byrne PF (2000). Inheritance of resistance to Fusarium wilt in two common bean races. Crop Sci 40, 954-958. |
[15] | Deng Y, Chen H, Zhang C, Cai T, Zhang B, Zhou S, Fountain JC, Pan RL, Guo B, Zhuang WJ (2018). Evolution and characterisation of the AhRAF4 NB-ARC gene family induced by Aspergillus flavus inoculation and abiotic stresses in peanut. Plant Biol 20, 737-750. |
[16] | Fall AL, Byrne PF, Jung G, Coyne DP, Brick MA, Schwartz HF (2001). Detection and mapping of a major locus for Fusarium wilt resistance in common bean. Crop Sci 41, 1494-1498. |
[17] | Gao ZY, Chen YF, Randlett MD, Zhao XC, Findell JL, Kieber JJ, Schaller GE (2003). Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J Biol Chem 278, 34725-34732. |
[18] | Grant MR, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes RW, Dangl JL (1995). Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269, 843-846. |
[19] | Harter LL (1929). A Fusarium disease of beans. Phytopathology 19, 82. |
[20] | Huang Y, Li H, Hutchison CE, Laskey J, Kieber JJ (2003). Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 33, 221-233. |
[21] | Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993). CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72, 427-441. |
[22] | Leit?o ST, Malosetti M, Song QJ, van Eeuwijk F, Rubiales D, Vaz Patto MC (2020). Natural variation in portuguese common bean germplasm reveals new sources of resistance against Fusarium oxysporum f. sp. phaseoli and resistance-associated candidate genes. Phytopath-ology 110, 633-647. |
[23] | Li YX, Wei KF (2020). Comparative functional genomics analysis of cytochrome P450 gene superfamily in wheat and maize. BMC Plant Biol 20, 93. |
[24] | Manzo D, Ferriello F, Puopolo G, Zoina A, D'Esposito D, Tardella L, Ferrarini A, Ercolano MR (2016). Fusarium oxysporum f. sp. radicis-lycopersici induces distinct transcriptome reprogramming in resistant and susceptible isogenic tomato lines. BMC Plant Biol 16, 53. |
[25] | Martin GB, Bogdanove AJ, Sessa G (2003). Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54, 23-61. |
[26] | McCarthy RL, Zhong RQ, Ye ZH (2009). MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell Physiol 50, 1950-1964. |
[27] | Mindrinos M, Katagiri F, Yu GL, Ausubel FM (1994). The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine- rich repeats. Cell 78, 1089-1099. |
[28] | Mittler R, Vanderauwera S, Gollery M, van Breusegem F (2004). Reactive oxygen gene network of plants. Trends Plant Sci 9, 490-498. |
[29] | Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S (2003). Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J 33, 887-898. |
[30] | Nakayama N, Takemae A, Shoun H (1996). Cytochrome P450foxy, a catalytically self-sufficient fatty acid hydroxylase of the fungus Fusarium oxysporum. J Biochem 119, 435-440. |
[31] | Nie YB, Ji WQ (2019). Cloning and characterization of disease resistance protein RPM1 genes against powdery mildew in wheat line N9134. Cereal Res Commun 47, 473-483. |
[32] | Ribeiro RLD, Hagedorn DJ (1979). Inheritance and nature of resistance in beans to Fusarium oxysporum f. sp. phaseoli. Phytopathology 69, 859-861. |
[33] | Salgado MO, Schwartz HF, Brick MA (1995). Inheritance of resistance to a Colorado race of Fusarium oxysporum f. sp. phaseoli in common beans. Plant Dis 79, 279-281. |
[34] | Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, Jenkins J, Shu SQ, Song QJ, Chavarro C, Torres-Torres M, Geffroy V, Moghaddam SM, Gao D, Abernathy B, Barry K, Blair M, Brick MA, Chovatia M, Gepts P, Goodstein DM, Gonzales M, Hellsten U, Hyten DL, Jia GF, Kelly JD, Kudrna D, Lee R, Richard MMS, Miklas PN, Osorno JM, Rodrigues J, Thareau V, Urrea CA, Wang M, Yu Y, Zhang M, Wing RA, Cregan PB, Rokhsar DS, Jackson SA (2014). A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46, 707-713. |
[35] | Sun JH, Huang GZ, Fan FG, Wang SF, Zhang YY, Han YF, Zou YM, Lu DP (2017). Comparative study of Arabidopsis PBS1 and a wheat PBS1 homolog helps understand the mechanism of PBS1 functioning in innate immunity. Sci Rep 7, 5487. |
[36] | Swiderski MR, Innes RW (2001). The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J 26, 101-112. |
[37] | Wang AJ, Shu XY, Jing X, Jiao CZ, Chen L, Zhang JF, Ma L, Jiang YQ, Yamamoto N, Li SC, Deng QM, Wang SQ, Zhu J, Liang YY, Zou T, Liu HN, Wang LZ, Huang YB, Li P, Zheng AP (2021). Identification of rice (Oryza sativa L.) genes involved in sheath blight resistance via a genome- wide association study. Plant Biotechnol J 19, 1553-1566. |
[38] | Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B (1994). The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78, 1101-1115. |
[39] | Woo SL, Zoina A, Del Sorbo G, Lorito M, Nanni B, Scala F, Noviello C (1996). Characterization of Fusarium oxysporum f. sp. phaseoli by pathogenic races, VCGs, RFLPs, and RAPD. Phytopathology 86, 966-973. |
[40] | Wu J, Wang LF, Fu JJ, Chen JB, Wei SH, Zhang SL, Zhang J, Tang YS, Chen ML, Zhu JF, Lei L, Geng QH, Liu Cl, Wu L, Li XM, Wang Xl, Wang Q, Wang Zl, Xing Sl, Zhang HK, Blair MW, Wang SM (2020). Resequencing of 683 common bean genotypes identifies yield component trait associations across a north-south cline. Nat Genet 52, 118-125. |
[41] | Xue RF, Wu J, Wang LF, Blair MW, Wang XM, Ge WD, Zhu Z, Wang SM (2014). Salicylic acid enhances resistance to Fusarium oxysporum f. sp. phaseoli in common beans (Phaseolus vulgaris L.). J Plant Growth Regul 33, 470-476. |
[42] | Xue RF, Wu J, Zhu ZD, Wang LF, Wang XM, Wang SM, Blair MW (2015). Differentially expressed genes in resistant and susceptible common bean (Phaseolus vulgaris L.) genotypes in response to Fusarium oxysporum f. sp. phaseoli. PLoS One 10, e0127698. |
[43] | Xue RF, Wu XB, Wang YJ, Zhuang Y, Chen J, Wu J, Ge WD, Wang LF, Wang SM, Blair MW (2017). Hairy root transgene expression analysis of a secretory peroxidase (PvPOX1) from common bean infected by Fusarium wilt. Plant Sci 260, 1-7. |
[44] | Yang DL, Yang YN, He ZH (2013). Roles of plant hormones and their interplay in rice immunity. Mol Plant 6, 675-685. |
[45] | Yuan SK, Zhou MG (2005). A major gene for resistance to carbendazim, in field isolates of Gibberella zeae. Can J Plant Pathol 27, 58-63. |
[46] | Zhong RQ, Ye ZH (2012). MYB46 and MYB83 bind to the SMRE sites and directly activate a suite of transcription factors and secondary wall biosynthetic genes. Plant Cell Physiol 53, 368-380. |
/
〈 | 〉 |