柳枝稷木质素基因F5H的高效编辑
收稿日期: 2022-10-13
录用日期: 2023-01-16
网络出版日期: 2023-01-16
基金资助
中国科学院战略性先导科技专项(A类)(XDA26030301);内蒙古自治区关键技术攻关计划(2020GG0176);“科技兴蒙”重点专项(2020-科技兴蒙-草种业技术创新中心-2);国家自然科学基金(32160326)
Highly Efficient Gene Editing of Lignin Gene F5H in Switchgrass
Received date: 2022-10-13
Accepted date: 2023-01-16
Online published: 2023-01-16
柳枝稷(Panicum virgatum)是重要的C4多年生木质纤维素类生态能饲草。为了快速创制细胞壁转化效率高的能饲草新资源, 以异源四倍体柳枝稷品种Alamo为材料, 克隆了其木质素合成途径的阿魏酸-5-羟基化酶基因PvF5H, 并根据其序列设计编辑靶点, 用于构建CRISPR/Cas9-PvF5H编辑载体, 最后通过农杆菌(Agrobacterium tumefaciens)介导的遗传转化方法, 获得了59株柳枝稷转基因阳性植株。测序分析表明, PvF5H在94.9%的转基因植株中被编辑, 纯合编辑效率为55.4%。该研究建立了高效的柳枝稷基因编辑系统, 实现了对细胞壁品质相关靶基因的有效编辑, 为今后能饲草新品种的培育奠定了基础。
邱锐, 何峰, 李瑞, 王亚梅, 邢思年, 曹英萍, 刘叶飞, 周昕越, 赵彦, 付春祥 . 柳枝稷木质素基因F5H的高效编辑[J]. 植物学报, 2023 , 58(2) : 298 -307 . DOI: 10.11983/CBB22240
Switchgrass (Panicum virgatum) is an important C4 perennial lignocellulosic bioenergy and forage crop. In order to rapidly develop novel germplasm of switchgrass with high cell wall conversion rate, we cloned the ferulic acid 5-hydroxylase gene (PvF5H) from the heterotetraploid switchgrass cultivar Alamo. According to the PvF5H sequence, the editing target sgRNA was designed and used to construct CRISPR/Cas9-PvF5H editing vector. Finally, 59 positive transgenic switchgrass lines were generated by Agrobacterium tumefaciens mediated transformation. Sequencing analysis showed that the PvF5H was edited in most of the transgenic lines (94.9%), and the homozygous editing efficiency was 55.4%. Thus, we have successfully established a highly efficient gene editing system for switchgrass. It will facilitate manipulating target genes involved in cell wall quality and can be employed to breed novel switchgrass cultivars for production of biofuels and fodders in future.
Key words: bioenergy and forage grass; switchgrass; lignin; F5H; gene editing
[1] | 何海锋, 吴娜, 刘吉利, 陈娟, 刘晓侠, 常雯雯 (2020). 柳枝稷种植年限对盐碱土壤理化性质的影响. 生态环境学报 29, 285-292. |
[2] | 金枝, 陈倩, 代琳心, 马建锋 (2022). 木质纤维细胞壁大分子取向研究进展. 北京林业大学学报 44(12), 153-160. |
[3] | 林萌萌, 李春娟, 闫彩霞, 孙全喜, 赵小波, 王娟, 苑翠玲, 单世华 (2021). CRISPR/Cas9基因编辑技术在作物中的应用. 核农学报 35, 1329-1339. |
[4] | 刘吉利, 朱万斌, 谢光辉, 林长松, 程序 (2009). 能源作物柳枝稷研究进展. 草业学报 18(3), 232-240. |
[5] | 马永清, 郝智强, 熊韶峻, 刘吉利 (2012). 我国柳枝稷规模化种植现状与前景. 中国农业大学学报 17(6), 133-137. |
[6] | 王进 (2009). 亚麻(Linum usitatissimum)木质素合成关键酶基因的克隆及表达分析. 硕士论文. 北京: 中国农业科学院. pp. 3-5. |
[7] | 徐超, 方志, 杨芳梅, 杨君祎, 闫冲冲, 邹鹤伟, 张金云, 林毅, 蔡永萍 (2015). 砀山酥梨果实F5H表达与石细胞发育的分析. 植物生理学报 51, 778-784. |
[8] | Akbas MY, Stark BC (2016). Recent trends in bioethanol production from food processing byproducts. J Ind Microbiol Biotechnol 43, 1593-1609. |
[9] | Amthor JS (2003). Efficiency of lignin biosynthesis: a quantitative analysis. Ann Bot 91, 673-695. |
[10] | Andersen JR, Zein I, Wenzel G, Darnhofer B, Eder J, Ouzunova M, Lübberstedt T (2008). Characterization of phenylpropanoid pathway genes within European maize (Zea mays L.) inbreds. BMC Plant Biol 8, 2. |
[11] | Baskin TI (2017). Plant cell growth: cellulose caught slipping. Nat Plants 3, 17063. |
[12] | Baxter HL, Mazarei M, Labbe N, Kline LM, Cheng QK, Windham MT, Mann DGJ, Fu CX, Ziebell A, Sykes RW, Rodriguez M Jr, Davis MF, Mielenz JR, Dixon RA, Wang ZY, Stewart CN Jr (2014). Two-year field analysis of reduced recalcitrance transgenic switchgrass. Plant Bio- technol J 12, 914-924. |
[13] | Boerjan W, Ralph J, Baucher M (2003). Lignin biosynthesis. Annu Rev Plant Biol 54, 519-546. |
[14] | Bortesi L, Fischer R (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33, 41-52. |
[15] | Chen CJ, Chen H, Zhang Y, Thomas HR, Frank MH, He YH, Xia R (2020). TBtools: an integrative toolkit deveoped for interactive analyses of big biological data. Mol Plant 13, 1194-1202. |
[16] | Chen F, Dixon RA (2007). Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25, 759-761. |
[17] | Fu CX, Mielenz JR, Xiao XR, Ge YX, Hamilton CY, Rodriguez M Jr, Chen F, Foston M, Ragauskas A, Bouton J, Dixon RA, Wang ZY (2011). Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci USA 108, 3803-3808. |
[18] | Guo D, Chen F, Inoue K, Blount JW, Dixon RA (2001). Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa. impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 13, 73-88. |
[19] | Humphreys JM, Chapple C (2002). Rewriting the lignin roadmap. Curr Opin Plant Biol 5, 224-229. |
[20] | Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Scien- ce 337, 816-821. |
[21] | Jung JH, Fouad WM, Vermerris W, Gallo M, Altpeter F (2012). RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Plant Biotechnol J 10, 1067-1076. |
[22] | Keshwani DR, Cheng JJ (2009). Switchgrass for bioethanol and other value-added applications: a review. Bioresour Technol 100, 1515-1523. |
[23] | Kim J, Choi B, Park YH, Cho BK, Lim HS, Natarajan S, Park SU, Bae H (2013). Molecular characterization of ferulate 5-hydroxylase gene from kenaf (Hibiscus cannabinus L.). Sci World J 2013, 421578. |
[24] | Lapierre C, Pollet B, Petit-Conil M, Toval G, Romero J, Pilate G, Leplé JC, Boerjan W, Ferret V, De Nadai V, Jouanin L (1999). Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping. Plant Physiol 119, 153-164. |
[25] | Lovell JT, MacQueen AH, Mamidi S, Bonnette J, Jenkins J, Napier JD, Sreedasyam A, Healey A, Session A, Shu SQ, Barry K, Bonos S, Boston L, Daum C, Deshpande S, Ewing A, Grabowski PP, Haque T, Harrison M, Jiang JM, Kudrna D, Lipzen A, Pendergast IV TH, Plott C, Qi P, Saski CA, Shakirov EV, Sims D, Sharma M, Sharma R, Stewart A, Singan VR, Tang YH, Thibivillier S, Webber J, Weng XY, Williams M, Wu GA, Yoshinaga Y, Zane M, Zhang L, Zhang JY, Behrman KD, Boe AR, Fay PA, Fritschi FB, Jastrow JD, Lloyd-Reilley J, Martínez-Reyna JM, Matamala R, Mitchell RB, Rouquette FM Jr, Ronald P, Saha M, Tobias CM, Udvardi M, Wing RA, Wu YQ, Bartley LE, Casler M, Devos KM, Lowry DB, Rokhsar DS, Grimwood J, Juenger TE, Schmutz J (2021). Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature 590, 438-444. |
[26] | Meyer K, Cusumano JC, Somerville C, Chapple CC (1996). Ferulate-5-hydroxylase from Arabidopsis thaliana defines a new family of cytochrome P450-dependent monoxygenases. Proc Natl Acad Sci USA 93, 6869-6874. |
[27] | Nageswara-Rao M, Soneji JR, Kwit C, Stewart CN Jr (2013). Advances in biotechnology and genomics of swi- tchgrass. Biotechnol Biofuels 6, 77. |
[28] | Park JJ, Yoo CG, Flanagan A, Pu YQ, Debnath S, Ge YX, Ragauskas AJ, Wang ZY (2017). Defined tetra-allelic gene disruption of the 4-coumarate: coenzyme A ligase 1 (Pv4CL1) gene by CRISPR/Cas9 in switchgrass results in lignin reduction and improved sugar release. Biotechnol Biofuels 10, 284. |
[29] | Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W (2003). Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133, 1051-1071. |
[30] | Sakiroglu M, Sherman-Broyles S, Story A, Moore KJ, Doyle JJ, Brummer EC (2012). Patterns of linkage dise- quilibrium and association mapping in diploid alfalfa (M. sativa L.). Theor Appl Genet 125, 577-590. |
[31] | Shen H, He XZ, Poovaiah CR, Wuddineh WA, Ma JY, Mann DGJ, Wang HZ, Jackson L, Tang YH, Neal Stewart C Jr, Chen F, Dixon RA (2012). Functional characterization of the switchgrass (Panicum virgatum) R2R3-MYB transcription factor PvMYB4 for improvement of lignocellulosic feedstocks. New Phytol 193, 121-136. |
[32] | Shen H, Mazarei M, Hisano H, Escamilla-Trevino L, Fu CX, Pu YQ, Rudis MR, Tang YH, Xiao XR, Jackson L, Li GF, Hernandez T, Chen F, Ragauskas AJ, Stewart CN Jr, Wang ZY, Dixon RA (2013). A genomics approach to deciphering lignin biosynthesis in switchgrass. Plant Cell 25, 4342-4361. |
[33] | Stewart JJ, Akiyama T, Chapple C, Ralph J, Mansfield SD (2009). The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar. Plant Phy- siol 150, 621-635. |
[34] | Wu ZY, Wang NF, Hisano H, Cao YP, Wu FY, Liu WW, Bao Y, Wang ZY, Fu CX (2019). Simultaneous regulation of F5H in COMT-RNAi transgenic switchgrass alterse- fects of COMT suppression on syringyl lignin biosynthe-sis. Plant Biotechnol J 17, 836-845. |
[35] | Xu B, Escamilla-Trevi?o LL, Sathitsuksanoh N, Shen ZX, Shen H, Zhang YHP, Dixon RA, Zhao BY (2011). Silencing of 4-coumarate: coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. New Phytol 192, 611-625. |
/
〈 | 〉 |