研究报告

褪黑素促进镉胁迫下番茄种子萌发的调控机理

展开
  • 绍兴文理学院元培学院, 绍兴 312000

收稿日期: 2022-08-26

  录用日期: 2022-12-01

  网络出版日期: 2022-12-23

基金资助

国家自然科学基金(31902095)

Regulatory Mechanism of Melatonin on Tomato Seed Germination Under Cd2+ Stress

Expand
  • Shaoxing University Yuanpei College, Shaoxing 312000, China

Received date: 2022-08-26

  Accepted date: 2022-12-01

  Online published: 2022-12-23

摘要

土壤镉(Cd2+)污染严重制约设施蔬菜的产量和品质。褪黑素(MT)可以增强植株对多种逆境的抗性, 然而Cd2+胁迫下MT调控番茄(Solanum lycopersicum)种子萌发的下游信号尚不清楚。该研究以番茄野生型Alisa Craig种子为材料, 探究不同浓度Cd2+处理及外源MT对番茄种子萌发的调控效应。结果表明, 0.5 mmol·L-1以上的Cd2+处理显著抑制番茄种子的萌发和幼苗生长。用0.15 mmol·L-1 MT浸种可降低种子萌发后地下部和地上部的Cd2+含量, 有效缓解Cd2+胁迫对番茄种子萌发和幼苗生长的抑制作用。MT上调了番茄胚根中植物螯合肽和转运蛋白基因(PCSNRAMP1ABCC3HMA3ABCG5)的表达, 促进Cd2+的跨膜转运以及液泡隔离。此外, MT减轻了Cd2+诱导的氧化损伤, 除褪黑素自身的抗氧化作用外, 也与抗氧化酶(CAT、APX与ALDH)活性的增强相关。进一步分析表明, MT显著下调了Cd2+胁迫下脱落酸(ABA)合成基因(NCED1NCED2)的表达, 并上调了ABA分解基因ABA8ox1的表达, 降低ABA含量, 从而有效调节赤霉素/脱落酸(GA/ABA)的比值, 促进Cd2+胁迫下番茄种子的萌发。

本文引用格式

蔡淑钰, 刘建新, 王国夫, 吴丽元, 宋江平 . 褪黑素促进镉胁迫下番茄种子萌发的调控机理[J]. 植物学报, 2023 , 58(5) : 720 -732 . DOI: 10.11983/CBB22202

Abstract

Soil cadmium (Cd) pollution seriously restricts the yield and quality of facility vegetables. Melatonin (MT) can enhance the resistance to various stresses in plants. However, the downstream signals, which regulated by MT during tomato seed germination under Cd2+ stress remains unclear. The effects of Cd2+ stress and exogenous MT on seed germination were investigated using tomato (Solanum lycopersicum) wild-type Alisa Craig seeds. The results showed that the germination of tomato seeds and seedling growth were significantly inhibited by Cd2+ treatment with more than 0.5 mmol·L-1. Exogenous MT (0.15 mmol·L-1) reduced the content of Cd2+ in the underground and above-ground tissues of seedlings, effectively alleviating the inhibitory effect of Cd2+ stress on tomato seed germination and seedling length. The expression of phytochelatin and transporters-related genes (PCS, NRAMP1, ABCC3, HMA3, and ABCG5) in tomato radicles were significantly increased by MT under Cd2+ stress, showing the positive regulation of MT in transmembrane transport and vacuolar sequestration of Cd2+. In addition, MT alleviated the oxidative damage induced by Cd2+ stress, which was related to the enhanced activities of CAT, APX, and ALDH enzymes apart from its own scavenging ability. Furthermore, MT significantly down-regulated the expressions of abscisic acid (ABA) synthesis genes (NCED1 and NCED2) under Cd2+ stress, and up-regulated the expression of ABA decomposition gene ABA8ox1, leading to the decrease of ABA content, which effectively regulated the GA/ABA ratio and promoted the germination of tomato seeds under Cd2+ stress.

参考文献

[1] 安婷婷, 黄帝, 王浩, 张一, 陈应龙 (2021). 植物响应镉胁迫的生理生化机制研究进展. 植物学报 56, 347-362.
[2] 陈雅丽, 翁莉萍, 马杰, 武晓娟, 李永涛 (2019). 近十年中国土壤重金属污染源解析研究进展. 农业环境科学学报 38, 2219-2238.
[3] 李冬, 王艳芳, 王悦华, 温烜琳, 蔡慧英, 郑晓蕾, 陈彤彤, 刘领 (2019). 外源褪黑素对镉胁迫下豌豆种子萌发、幼苗抗性生理及镉含量的影响. 核农学报 33, 2271-2279.
[4] 刘德帅, 姚磊, 徐伟荣, 冯美, 姚文孔 (2022). 褪黑素参与植物抗逆功能研究进展. 植物学报 57, 111-126.
[5] 刘仕翔, 黄益宗, 罗泽娇, 黄永春, 保琼莉, 王培培, 袁彪, 李文华 (2016). 外源褪黑素处理对镉胁迫下水稻种子萌发的影响. 农业环境科学学报 35, 1034-1041.
[6] 刘茵, 梁峰 (2021). 不同重金属离子影响下番茄种子的萌发及幼苗生长研究. 安徽农学通报 27(17), 99-101.
[7] 孙淑珍 (2020). 不同小麦品种耐铬(Cr6+)性差异及褪黑素缓解效应. 硕士论文. 南京: 南京农业大学. pp. 22-37.
[8] 王璐瑶, 陈謇, 赵守清, 闫慧莉, 许文秀, 刘若溪, 麻密, 虞轶俊, 何振艳 (2022). 水稻镉积累特性的生理和分子机制研究概述. 植物学报 57, 236-249.
[9] 张星雨, 叶志彪, 张余洋 (2021). 植物响应镉胁迫的生理与分子机制研究进展. 植物生理学报 57, 1437-1450.
[10] 周明, 李常保 (2022). 我国番茄种业发展现状及展望. 蔬菜 (5), 6-10.
[11] Arnao MB, Hernández-Ruiz J (2015). Functions of melatonin in plants: a review. J Pineal Res 59, 133-150.
[12] Back K (2021). Melatonin metabolism, signaling and possible roles in plants. Plant J 105, 376-391.
[13] Chen L, Lu B, Liu LT, Duan WJ, Jiang D, Li J, Zhang K, Sun HC, Zhang YJ, Li CD, Bai ZY (2021). Melatonin promotes seed germination under salt stress by regulating ABA and GA3 in cotton (Gossypium hirsutum L.). Plant Physiol Biochem 162, 506-516.
[14] DalCorso G, Farinati S, Furini A (2010). Regulatory networks of cadmium stress in plants. Plant Signal Behav 5, 663-667.
[15] Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012). Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83, 33-46.
[16] Gu Q, Chen ZP, Yu XL, Cui WT, Pan JC, Zhao G, Xu S, Wang R, Shen WB (2017). Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA- mediated redox homeostasis. Plant Sci 261, 28-37.
[17] Hardeland R (2016). Melatonin in plants—diversity of levels and multiplicity of functions. Front Plant Sci 7, 198.
[18] Hasan MK, Ahammed GJ, Yin LL, Shi K, Xia XJ, Zhou YH, Yu JQ, Zhou J (2015). Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Front Plant Sci 6, 601.
[19] He JL, Zhuang XL, Zhou JT, Sun LY, Wan HX, Li HF, Lyu DG (2020). Exogenous melatonin alleviates cadmium uptake and toxicity in apple rootstocks. Tree Physiol 40, 746-761.
[20] Huang XY, Deng FL, Yamaji N, Pinson SRM, Fujii-Kashino M, Danku J, Douglas A, Guerinot ML, Salt DE, Ma JF (2016). A heavy metal P-type ATPase OsHMA4 prevents copper accumulation in rice grain. Nat Commun 7, 12138.
[21] Khan N, You FM, Datla R, Ravichandran S, Jia BS, Cloutier S (2020). Genome-wide identification of ATP binding cassette (ABC) transporter and heavy metal associated (HMA) gene families in flax (Linum usitatissimum L.). BMC Genomics 21, 722.
[22] Li C, Tan DX, Liang D, Chang C, Jia DF, Ma FW (2015). Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. J Exp Bot 66, 669-680.
[23] Li H, Guo YL, Lan ZX, Zhang ZX, Ahammed GJ, Chang JJ, Zhang Y, Wei CH, Zhang X (2021). Melatonin antagonizes ABA action to promote seed germination by regulating Ca2+ efflux and H2O2 accumulation. Plant Sci 303, 110761.
[24] Li MQ, Hasan MK, Li CX, Ahammed GJ, Xia XJ, Shi K, Zhou YH, Reiter RJ, Yu JQ, Xu MX, Zhou J (2016a). Melatonin mediates selenium-induced tolerance to cadmium stress in tomato plants. J Pineal Res 61, 291-302.
[25] Li XN, Tan DX, Jiang D, Liu FL (2016b). Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley. J Pineal Res 61, 328-339.
[26] Liang CZ, Zheng GY, Li WZ, Wang YQ, Hu B, Wang HR, Wu HK, Qian YW, Zhu XG, Tan DX, Chen SY, Chu CC (2015). Melatonin delays leaf senescence and enhances salt stress tolerance in rice. J Pineal Res 59, 91-101.
[27] Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-??Ct methods. Methods 25, 402-408.
[28] Lv Y, Pan JJ, Wang HP, Reiter RJ, Li X, Mou ZM, Zhang JM, Yao ZP, Zhao DK, Yu DQ (2021). Melatonin inhibits seed germination by crosstalk with abscisic acid, gibberellin, and auxin in Arabidopsis. J Pineal Res 70, e12736.
[29] Moustafa-Farag M, Elkelish A, Dafea M, Khan M, Arnao MB, Abdelhamid MT, Abu El-Ezz A, Almoneafy A, Mahmoud A, Awad M, Li LF, Wang YH, Hasanuzzaman M, Ai SY (2020). Role of melatonin in plant tolerance to soil stressors: salinity, pH and heavy metals. Molecules 25, 5359.
[30] Ni J, Wang QJ, Shah FA, Liu WB, Wang DD, Huang SW, Fu SL, Wu LF (2018). Exogenous melatonin confers cadmium tolerance by counterbalancing the hydrogen peroxide homeostasis in wheat seedlings. Molecules 23, 799.
[31] Reiter RJ, Rosales-Corral S, Tan DX, Jou MJ, Galano A, Xu B (2017). Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell Mol Life Sci 74, 3863-3881.
[32] Sharma A, Sidhu GPS, Araniti F, Bali AS, Shahzad B, Tripathi DK, Brestic M, Skalicky M, Landi M (2020). The role of salicylic acid in plants exposed to heavy metals. Molecules 25, 540.
[33] Sheteiwy MS, Shao HB, Qi WC, Hamoud YA, Shaghaleh H, Khan NU, Yang RP, Tang BP (2019). GABA-alleviated oxidative injury induced by salinity, osmotic stress and their combination by regulating cellular and molecular signals in rice. Int J Mol Sci 20, 5709.
[34] Tousi S, Zoufan P, Ghahfarrokhie AR (2020). Alleviation of cadmium-induced phytotoxicity and growth improvement by exogenous melatonin pretreatment in mallow (Malva parviflora) plants. Ecotox Environ Saf 206, 111403.
[35] Wang L, Feng C, Zheng XD, Guo Y, Zhou FF, Shan DQ, Liu X, Kong J (2017). Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress. J Pineal Res 63, e12429.
[36] Wang L, Zhao Y, Reiter RJ, He CJ, Liu GS, Lei Q, Zuo BX, Zheng XD, Li QT, Kong J (2014). Changes in melatonin levels in transgenic ‘Micro-Tom’ tomato overexpressing ovine AANAT and ovine HIOMT genes. J Pineal Res 56, 134-142.
[37] Wang YP, Reiter RJ, Chan Z (2018). Phytomelatonin: a universal abiotic stress regulator. J Exp Bot 69, 963-974.
[38] Wang YS, Yang ZM (2005). Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant Cell Physiol 46, 1915-1923.
[39] Wei W, Li QT, Chu YN, Reiter RJ, Yu XM, Zhu DH, Zhang WK, Ma B, Lin Q, Zhang JS, Chen SY (2015). Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot 66, 695-707.
[40] Yadav SK (2010). Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76, 167-179.
[41] Zhang HJ, Qiu YH, Ji YH, Wu X, Xu XL, Wu P (2023). Melatonin promotes seed germination via regulation of ABA signaling under low temperature stress in cucumber. J Plant Growth Regul 42, 2232-2245.
[42] Zhang HJ, Zhang N, Yang RC, Wang L, Sun QQ, Li DB, Cao YY, Weeda S, Zhao B, Ren SX, Guo YD (2014). Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.). J Pineal Res 57, 269-279.
[43] Zhang Y, Zhou XJ, Dong YT, Zhang F, He QL, Chen JH, Zhu SJ, Zhao TL (2021). Seed priming with melatonin improves salt tolerance in cotton through regulating photosynthesis, scavenging reactive oxygen species and coordinating with phytohormone signal pathways. Ind Crop Prod 169, 113671.
文章导航

/