研究报告

拟南芥HSP1调节CERK1蛋白水平影响几丁质激发的防御反应

展开
  • 1.湖北医药学院附属人民医院, 十堰 442000
    2.华中农业大学生命科学技术学院, 武汉 430000
    3.湖北医药学院第三临床学院十堰 442000
    4.湖北医药学院第一临床学院, 十堰 442000
    5.湖北医药学院基础医学院, 十堰 442000

收稿日期: 2022-06-07

  录用日期: 2022-11-15

  网络出版日期: 2022-11-29

基金资助

湖北医药学院个人启动金(2020QDJZR024)

The Arabidopsis HSP1 Mediates Chitin-induced Defense Response by Regulating CERK1 Protein Level

Expand
  • 1. Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China
    2. College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
    3. Third Clinical College of Hubei University of Medicine, Shiyan 442000, China
    4. First Clinical College of Hubei University of Medicine, Shiyan 442000, China
    5. School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China

Received date: 2022-06-07

  Accepted date: 2022-11-15

  Online published: 2022-11-29

摘要

几丁质是真菌细胞壁的主要成分, 同时也是微生物相关分子模式(MAMP), 通过定位于细胞膜上的模式识别受体CERK1和LYK5识别, 激发植物的先天防御反应。该研究克隆了CERK1的胞内激酶域, 在酵母文库中筛选到1个分子伴侣HSP1与CERK1胞内域互作。通过CRISPR-Cas介导的基因编辑技术, 我们在野生型拟南芥(Arabidopsis thaliana) Col-0中敲除HSP1基因, 获得hsp1 v63删除突变体。使用几丁质处理Col-0和hsp1 v63删除突变体后发现, 下游防御相关基因的表达及丝裂原活化蛋白激酶磷酸化通路受到抑制。此外, 我们还发现CERK1蛋白水平在hsp1 v63删除突变体中低于野生型, 并且该突变体中CERK1含量降低与内质网降解系统有关。以上结果表明, HSP1是几丁质激发防御反应通路中的1个关键基因。该研究揭示了分子伴侣调控膜受体蛋白含量对植物防御反应的重要意义, 为农作物广谱抗性遗传改良奠定了理论基础。

本文引用格式

史君星, 闫一嘉, 董汝, 陶轩, 孙晓龙, 黄聪聪 . 拟南芥HSP1调节CERK1蛋白水平影响几丁质激发的防御反应[J]. 植物学报, 2023 , 58(5) : 712 -719 . DOI: 10.11983/CBB22117

Abstract

Chitin, a major component of the fungal cell wall, is a kind of typical microbe associated molecular pattern (MAMP) that is recognized by two plasma membrane located LysM receptors, CERK1 and LYK5, and trigger immune response in plants. In this study, the intracellular kinase domain of CERK1 was cloned and used to screen the yeast cDNA library, and identify its interaction with HSP1. Using CRISPR-Cas-mediated gene editing technology, we knocked out the HSP1 gene in wild-type Arabidopsis thaliana Col-0 and obtained hsp1 v63 deletion mutant. We showed that the expression of downstream defense-related genes and the phosphorylation pathway of mitogen-activated protein kinase were inhibited in the hsp1 v63 deletion mutant compared to the wild type Col-0. We also showed that the protein level of CERK1 in hsp1 v63 mutants was lower than that in the Col-0, and that reduced CERK1 levels in this mutant were associated with the endoplasmic reticulum degradation system. These results indicate that HSP1 is a key gene in the chitin-induced defense response pathway, thus revealing the important roles of molecular chaperone in regulating receptor protein level and improvement in crop resistance.

参考文献

[1] 欧阳石文, 赵开军, 冯兰香 (2001). 植物几丁质酶的结构与功能、分类及进化. 植物学通报 18, 418-426.
[2] 张静, 杨洪强, 魏钦平 (2003). 几丁质及其衍生物的生物活性与在农业中的应用. 植物学通报 20, 178-183.
[3] Antolín-Llovera M, Ried MK, Binder A, Parniske M (2012). Receptor kinase signaling path-ways in plant-microbe in-teractions. Annu Rev Phytopathol 50, 451-473.
[4] Bi GZ, Zhou ZY, Wang WB, Li L, Rao SF, Wu Y, Zhang XJ, Menke FLH, Chen S, Zhou JM (2018). Receptor-like cytoplasmic kinases directly link diverse pattern recogni-tion receptors to the activation of mitogen-activated pro-tein kinase cascades in Arabidopsis. Plant Cell 30, 1543-1561.
[5] Bigeard J, Colcombet J, Hirt H (2015). Signaling mecha-nisms in pattern-triggered immunity (PTI). Mol Plant 8, 521-539.
[6] Chen LT, Hamada S, Fujiwara M, Zhu TH, Thao NP, Wong HL, Krishna P, Ueda T, Kaku H, Shibuya N, Kawasaki T, Shimamoto K (2010). The Hop/Sti1-Hsp90 chaperone complex facilitates the maturation and transport of a PAMP receptor in rice innate immunity. Cell Host Microbe 7, 185-196.
[7] Gong BQ, Guo JH, Zhang NN, Yao XR, Wang HB, Li JF (2019). Cross-microbial protection via priming a conserved immune co-receptor through juxtamembrane phos-phorylation in plants. Cell Host Microbe 26, 810-822.
[8] Hong Z, Jin H, Tzfira T, Li JM (2008). Multiple mechanism-mediated retention of adefective brassinosteroid receptor in the endoplasmic reticulum of Arabidopsis. Plant Cell 20, 3418-3429.
[9] Huang CC, Yan YJ, Zhao HL, Ye Y, Cao YR (2020). Ara-bidopsis CPK5 phosphorylates the chitinreceptor LYK5 to regulate plant innate immunity. Front Plant Sci 11, 702.
[10] Jones JDG, Dangl JL (2006). The plant immune system. Nature 444, 323-329.
[11] Li J, Zhao-Hui C, Batoux M, Nekrasov V, Roux M, Chin-chilla D, Zipfel C, Jones JDG (2009). Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR. Proc Natl Acad Sci USA 106, 15973-15978.
[12] Li W, Deng YW, Ning YS, He ZH, Wang GL (2020). Ex-ploiting broad-spectrum disease resistance in crops: from molecular dissection to breeding. Annu Rev Plant Biol 71, 575-603.
[13] Liu J, Liu B, Chen SF, Gong BQ, Chen LJ, Zhou Q, Xiong F, Wang ML, Feng DR, Li JF, Wang HB, Wang JF (2018). A tyrosine phosphorylation cycle regulates fungal activation of a plant receptor Ser/Thr kinase. Cell Host Microbe 23, 241-253.
[14] Lu D, Lin W, Gao X, Wu S, Cheng C, Avila J, Heese A, Devarenne TP, He P, Shan L (2011). Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant in-nate immunity. Science 332, 1439-1442.
[15] Nagashima Y, von Schaewen A, Koiwa H (2018). Function of N-glycosylation in plants. Plant Sci 274, 70-79.
[16] Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A (2019). The global burden of pathogens and pests on major food crops. Nat Ecol Evol 3, 430-439.
[17] Strasser R (2018). Protein quality control in the endoplasmic reticulum of plants. Annu Rev Plant Biol 69, 147-172.
[18] Tang DZ, Wang GX, Zhou JM (2017). Receptor kinases in plant-pathogen interactions: more than pattern recognition. Plant Cell 29, 618-637.
[19] Zhou JG, Liu DR, Wang P, Ma XY, Lin WW, Chen SX, Mishev K, Lu DP, Kumar R, Vanhoutte I, Meng XZ, He P, Russinova E, Shan LB (2018). Regulation of Arabidopsis brassinosteroid receptor BRI1 endocytosis and degradation by plant U-box PUB12/PUB-13-mediated ubiquitination. Proc Natl Acad Sci USA 115, E1906-E1915.
[20] Zou JJ, Wei FJ, Wang C, Wu JJ, Ratnasekera D, Liu WX, Wu WH (2010). Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress. Plant Physiol 154, 1232-1243.
文章导航

/

674-3466/bottom_cn.htm"-->