研究报告

谷子PLATZ转录因子基因家族的鉴定和分析

展开
  • 1.山西农业大学生命科学学院, 晋中 030801
    2.山西农业大学农学院, 晋中 030801

收稿日期: 2022-07-05

  录用日期: 2022-10-09

  网络出版日期: 2022-11-02

基金资助

国家自然科学基金(32001608);省部级重点实验室开放基金(202204010910001-02);山西农业大学博士科研启动项目(2021BQ112)

Genome-wide Identification and Analysis of PLATZ Transcription Factor Gene Family in Foxtail Millet

Expand
  • 1. College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China
    2. College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China

Received date: 2022-07-05

  Accepted date: 2022-10-09

  Online published: 2022-11-02

摘要

PLATZ转录因子家族是一类植物特异性锌依赖DNA结合蛋白, 在植物生长发育和抗逆过程中发挥不可或缺的作用。然而, 对于谷子(Setaria italica) PLATZ家族基因尚未进行系统研究。在谷子基因组中鉴定出17个PLATZ基因并对其进行系统命名。通过系统发育分析将SiPLATZ基因划分为5个亚家族, 同一亚家族成员具有相似的基因结构和保守基序。顺式作用元件分析表明, SiPLATZ基因可能在籽粒胚乳发育和多种抗逆反应中发挥作用。Ka/Ks分析表明, 重复基因受到纯化选择。SiPLATZ基因在不同组织和发育阶段的表达存在显著差异, 主要包括在根、叶和茎中高表达, 以及在穗和籽粒中高表达两类, 这体现出SiPLATZ基因生理功能的复杂性, 其可能参与调节籽粒生长和多种抗逆反应。此外, 结合WGCNA分析构建的共表达网络, 发现SiPLATZ6SiPLATZ8SiPLATZ9SiPLATZ11可能是谷子产量遗传改良和功能基因研究的候选基因。研究结果为深入揭示PLATZ转录因子在谷子生长发育中的生物学功能奠定了基础。

本文引用格式

孙蓉, 杨宇琭, 李亚军, 张会, 李旭凯 . 谷子PLATZ转录因子基因家族的鉴定和分析[J]. 植物学报, 2023 , 58(4) : 548 -559 . DOI: 10.11983/CBB22147

Abstract

The PLATZ transcription factor family is a class of plant-specific zinc-dependent DNA-binding proteins that play an indispensable role in plant growth and development and stress resistance. However, the PLATZ family genes have not been systematically analyzed in foxtail millet (Setaria italica). In this study, 17 PLATZ genes in the foxtail millet genome were identified and systematically named. The SiPLATZ genes were divided into five subfamilies by phylogenetic analysis, and members of the same subfamily have similar gene structures and motifs. Cis-acting element analysis demonstrated that the SiPLATZ genes may play a role in endosperm development and various stress-resistant responses. The Ka/Ks ratio analysis indicates that duplicated genes are subject to purifying selection. There were significant differences in the expression of SiPLATZ genes in different tissues and developmental stages, which were mainly divided into two categories: high expression in roots, leaves, and stems, and in spikes and seeds. This reflects the complexity of the physiological functions of SiPLATZ genes and their possible involvement in regulating seed growth and multiple stress responses. In addition, the co-expression network constructed in combination with WGCNA analysis revealed that SiPLATZ6, SiPLATZ8, SiPLATZ9 and SiPLATZ11 may be the candidates for genetic improvement of foxtail millet yield and functional gene research. These results lay the foundation for further studies on the biological functions of PLATZ transcription factors in foxtail millet growth and development.

参考文献

[1] 陈睿, 陈建民, 吴明基, 杨绍华, 胡昌泉 (2019). 水稻OsPLATZ14基因启动子的克隆及表达分析. 福建农业学报 34, 1137-1143.
[2] 刘宝玲, 张莉, 孙岩, 薛金爱, 高昌勇, 苑丽霞, 王计平, 贾小云, 李润植 (2016). 谷子bZIP转录因子的全基因组鉴定及其在干旱和盐胁迫下的表达分析. 植物学报 51, 473-487.
[3] 王海岗, 贾冠清, 智慧, 温琪汾, 董俊丽, 陈凌, 王君杰, 曹晓宁, 刘思辰, 王纶, 乔治军, 刁现民 (2016). 谷子核心种质表型遗传多样性分析及综合评价. 作物学报 42, 19-30.
[4] 杨瑞 (2017). 拟南芥锌指转录因子PLATZ5在盐胁迫响应中的功能研究. 硕士论文. 泰安: 山东农业大学. pp. 1-66.
[5] 张亚 (2018). 锌依赖的DNA结合蛋白家族基因OsPLATZ的功能研究. 硕士论文. 广州: 华南农业大学. pp. 1-69.
[6] 赵娟, 尹艺臻, 王晓璐, 马春英, 尹美强, 温银元, 宋喜娥, 董淑琦, 杨雪芳, 原向阳 (2020). 不同品种谷子愈伤组织对拿捕净胁迫的生理响应. 中国农业科学 53, 917-928.
[7] Bailey TL, Johnson J, Grant CE, Noble WS (2015). The MEME suite. Nucleic Acids Res 43, W39-W49.
[8] Chen CJ, Chen H, Zhang Y, Thomas HR, Frank MH, He YH, Xia R (2020). TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13, 1194-1202.
[9] Chou KC, Shen HB (2010). Cell-PLoc 2.0: an improved package of web-servers for predicting subcellular localization of proteins in various organisms. Nat Sci 2, 1090-1103.
[10] Diao XM, Schnable J, Bennetzen JL, Li JY (2014). Initiation of Setaria as a model plant. Front Agric Sci Eng 1, 16-20.
[11] Duvaud S, Gabella C, Lisacek F, Stockinger H, Ioannidis V, Durinx C (2021). Expasy, the Swiss bioinformatics resource portal, as designed by its users. Nucleic Acids Res 49, W216-W227.
[12] Fu YX, Cheng MP, Li ML, Guo XJ, Wu YR, Wang JR (2020). Identification and characterization of PLATZ transcription factors in wheat. Int J Mol Sci 21, 8934.
[13] Goodstein DM, Shu SQ, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012). Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40, D1178-D1186.
[14] Huangfu YG, Pan JW, Li Z, Wang QG, Mastouri F, Li Y, Yang S, Liu M, Dai SJ, Liu W (2021). Genome-wide identification of PTI1 family in Setaria italica and salinity-responsive functional analysis of SiPTI1-5. BMC Plant Biol 21, 319.
[15] Jones MK, Liu XY (2009). Origins of agriculture in East Asia. Science 324, 730-731.
[16] Kim JH, Kim J, Jun SE, Park S, Timilsina R, Kwon DS, Kim Y, Park SJ, Hwang JY, Nam HG, Kim GT, Woo HR (2018). ORESARA15, a PLATZ transcription factor, mediates leaf growth and senescence in Arabidopsis. New Phytol 220, 609-623.
[17] Langfelder P, Horvath S (2008). WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559.
[18] Lee GA, Crawford GW, Liu L, Chen XC (2007). Plants and people from the Early Neolithic to Shang periods in North China. Proc Natl Acad Sci USA 104, 1087-1092.
[19] Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30, 325-327.
[20] Letunic I, Khedkar S, Bork P (2021). SMART: recent updates, new developments and status in 2020. Nucleic Acids Res 49, D458-D460.
[21] Li Q, Wang JC, Ye JW, Zheng XX, Xiang XL, Li CS, Fu MM, Wang Q, Zhang ZY, Wu YR (2017). The maize imprinted gene Floury3 encodes a PLATZ protein required for tRNA and 5S rRNA transcription through interaction with RNA polymerase III. Plant Cell 29, 2661-2675.
[22] Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25, 402-408.
[23] Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, Finn RD, Bateman A (2021). Pfam: the protein families database in 2021. Nucleic Acids Res 49, D412-D419.
[24] Nagano Y, Furuhashi H, Inaba T, Sasaki Y (2001). A novel class of plant-specific zinc-dependent DNA-binding protein that binds to A/T-rich DNA sequences. Nucleic Acids Res 29, 4097-4105.
[25] Robinson JT, Thorvaldsdóttir H, Turner D, Mesirov JP (2020). igv.js: an embeddable JavaScript implementation of the integrative genomics viewer (IGV). BioRxiv. [2020-05-05]. https://doi.org/10.1101/2020.05.03.075499.
[26] Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 2498-2504.
[27] Tamura K, Stecher G, Kumar S (2021). MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38, 3022-3027.
[28] Wang AH, Hou QQ, Si LZ, Huang XH, Luo JH, Lu DF, Zhu JJ, Shangguan YY, Miao JS, Xie YF, Wang YC, Zhao Q, Feng Q, Zhou CC, Li Y, Fan DL, Lu YQ, Tian QL, Wang ZX, Han B (2019). The PLATZ transcription factor GL6 affects grain length and number in rice. Plant Physiol 180, 2077-2090.
[29] Wang J, Li SM, Lan L, Xie MS, Cheng S, Gan XL, Huang G, Du GH, Yu K, Ni XM, Liu BL, Peng GX (2021). De novo genome assembly of a foxtail millet cultivar Huagu11 uncovered the genetic difference to the cultivar Yugu1, and the genetic mechanism of imazethapyr tolerance. BMC Plant Biol 21, 271.
[30] Wang JC, Ji C, Li Q, Zhou Y, Wu YR (2018). Genome-wide analysis of the plant-specific PLATZ proteins in maize and identification of their general role in interaction with RNA polymerase III complex. BMC Plant Biol 18, 221.
[31] Wu JD, Jiang CP, Zhu HS, Jiang HY, Cheng BJ, Zhu SW (2015). Cloning and functional analysis of the promoter of a maize starch synthase III gene (ZmDULL1). Genet Mol Res 14, 5468-5479.
[32] Xu WY, Tang WS, Wang CX, Ge LH, Sun JC, Qi X, He Z, Zhou YB, Chen J, Xu ZS, Ma YZ, Chen M (2020). SiMYB56 confers drought stress tolerance in transgenic rice by regulating lignin biosynthesis and ABA signaling pathway. Front Plant Sci 11, 785.
[33] Yamada M, Han XW, Benfey PN (2020). RGF1 controls root meristem size through ROS signaling. Nature 577, 85-88.
[34] Yang ZR, Zhang HS, Li XK, Shen HM, Gao JH, Hou SY, Zhang B, Mayes S, Bennett M, Ma JX, Wu CY, Sui Y, Han YH, Wang XC (2020). A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants 6, 1167-1178.
[35] Zhou SR, Xue HW (2020). The rice PLATZ protein SHORT GRAIN6 determines grain size by regulating spikelet hull cell division. J Integr Plant Biol 62, 847-864.
文章导航

/