褪黑素对盐胁迫下普通菜豆芽期核酸修复的调控机制
收稿日期: 2022-07-15
录用日期: 2022-10-17
网络出版日期: 2022-10-25
基金资助
国家重点研发计划(2020YFD1001402);黑龙江省重点研发计划(GA21B009-04)
The Regulatory Mechanism of Melatonin on Nucleic Acid Repairing of Common Bean (Phaseolus vulgaris) at the Sprout Stage Under Salt Stress
Received date: 2022-07-15
Accepted date: 2022-10-17
Online published: 2022-10-25
普通菜豆(Phaseolus vulgaris)是重要的食用豆作物, 然而其极易受盐胁迫危害, 导致产量下降。褪黑素能提高植物耐盐能力。为探明外源褪黑素调控普通菜豆耐盐能力的机制, 以普通菜豆品种奶花芸豆(GZ-YD014)为实验材料, 设置水(W, 对照)、盐胁迫(S)和盐胁迫+100 µmol∙L-1褪黑素(M+S) 3个处理。结果发现, 盐胁迫抑制了普通菜豆胚根的生长, 使其长度、表面积、体积以及直径显著降低, 外源褪黑素可缓解盐胁迫对普通菜豆胚根生长的抑制。外施褪黑素显著降低盐胁迫下活性氧积累和丙二醛(MDA)含量, 提高保护酶(过氧化物酶、超氧化物歧化酶、过氧化氢酶以及抗坏血酸过氧化物酶)活性, 增加渗透调节物质(可溶性糖和可溶性蛋白)以及生长素(IAA)、赤霉素(GA)和玉米素(ZT)的含量, 降低脱落酸(ABA)含量。通过转录组分析挖掘出217个差异表达基因(DEGs), DEGs在GO富集中显著(P-value<0.05)富集到核酸相关条目上, 在KEGG富集中显著(P-value<0.05)富集到核酸损伤修复(包括碱基切除修复、错配修复以及核苷酸切除修复)通路。qRT-PCR以及RAPD分析结果表明, 核酸损伤修复通路为外源褪黑素调控普通菜豆耐盐能力的一种机制。该研究揭示了外源褪黑素对普通菜豆芽期耐盐能力的调控机制, 可为褪黑素应用于盐胁迫下普通菜豆增产提供理论依据。
张琦, 张文静, 袁宪凯, 李明, 赵强, 杜艳丽, 杜吉到 . 褪黑素对盐胁迫下普通菜豆芽期核酸修复的调控机制[J]. 植物学报, 2023 , 58(1) : 108 -121 . DOI: 10.11983/CBB22155
Common bean (Phaseolus vulgaris) is an important bean crop but it is highly susceptible to salt stress which causes yield decrease. Melatonin can improve the salt tolerance of plants. However, the mechanism of exogenous melatonin in regulating the salt tolerance of common bean has not been explored. In this study, the common bean variety Naihua common bean (GZ-YD014) was used as materials, and three treatments were set for comparisons, including water (W, control), salt stress (S), and salt stress+100 µmol∙L-1 melatonin (M+S). The results showed that salt stress inhibited the growth of sprouts, whose length, surface area, volume and diameter decreased significantly under salt stress conditions. Exogenous melatonin alleviated the inhibition of salt stress on the growth of common bean sprouts by signi-ficantly reducing the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) content, increasing protective enzymes such as peroxidase, superoxide dismutase, catalase and ascorbate peroxidase, osmotic regulators including soluble sugar and soluble protein content, auxin (IAA), gibberellin (GA), zeatin (ZT) content, and decreasing abscisic acid (ABA) content. Transcriptome analysis discovered 217 differentially expressed genes (DEGs), which were significantly enriched (P-value<0.05) in the nucleic acid-related entries by GO enrichment analysis and also in the nucleic acid damage repair (including base excision repair, mismatch repair and nucleotide excision repair) pathways by KEGG enrichment analysis (P-value<0.05). Real-time quantitative PCR and random amplified polymorphism analysis proved that the nucleic acid damage repair was a mechanism of exogenous melatonin regulating the salt tolerance of common bean. The study revealed the mechanism of exogenous melatonin regulating the salt tolerance of common bean sprouts, and provided a theoretical basis for the application of melatonin in common bean to increase yield under salt stress.
Key words: common bean; salt stress; melatonin; redox; base excision repair
[1] | 艾金祥, 宋嘉怡, 严浙楠, 王志超, 陈文倩, 吴玉环, 王燕燕, 潘蕾蕾, 许俞韬, 刘鹏 (2022). 褪黑素对铅胁迫下虎舌红和朱砂根生理响应及DNA损伤的调控效应. 植物学报 57, 171-181. |
[2] | 曹亮 (2020). 外源褪黑素对干旱胁迫下鼓粒期大豆碳氮代谢及产量品质的调控效应. 博士论文. 大庆: 黑龙江八一农垦大学. pp. 21-28. |
[3] | 陈莉, 刘连涛, 马彤彤, 江丹, 孙红春, 张永江, 张科, 白志英, 李存东 (2019). 褪黑素对盐胁迫下棉花种子抗氧化酶活性及萌发的影响. 棉花学报 31, 438-447. |
[4] | 陈琼, 韩瑞玺, 唐浩, 刘明月, 黄科, 周义之 (2018). 我国菜豆新品种选育研究现状及展望. 中国种业 (10), 9-14. |
[5] | 陈瑞, 唐秀梅, 张琪, 杨蓉, 黄蕾蕾, 任晴雯, 朱森林, 刘鹏 (2020). NaCl胁迫对黑小麦根系DNA损伤的影响. 南方农业学报 51, 299-304. |
[6] | 陈素玉, 赵强, 于高波, 任春元, 张玉先 (2022). 基于RAPD技术分析盐胁迫对大豆幼苗根系DNA的损伤. 生态学杂志 41, 1441-1447. |
[7] | 何松榆, 秦彬, 张明聪, 金喜军, 王孟雪, 任春元, 张玉先 (2019). 水分胁迫下外源褪黑素对大豆苗期抗氧化特性和产量的影响. 大豆科学 39, 407-412. |
[8] | 胡涛, 张鸽香, 郑福超, 曹钰 (2018). 植物盐胁迫响应的研究进展. 分子植物育种 16, 3006-3015. |
[9] | 姜超强, 祖朝龙 (2015). 褪黑素与植物抗逆性研究进展. 生物技术通报 31(4), 47-55. |
[10] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋 (2022). 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应. 作物学报 48, 1210-1221. |
[11] | 刘德帅, 姚磊, 徐伟荣, 冯美, 姚文孔 (2022). 褪黑素参与植物抗逆功能研究进展. 植物学报 57, 111-126. |
[12] | 栾非时, 祖元刚 (2002). 菜豆种质资源RAPD多样性的研究I. 植物研究 (4), 473-478. |
[13] | 聂志刚, 王艳, 李韶山 (2009). 重金属诱导拟南芥原生质体DNA损伤的单细胞凝胶电泳检测. 植物学通报 44, 117-123. |
[14] | 牛远, 杨修艳, 戴存凤, 王博文, 任高磊, 吴静磊, 王飞兵, 陈新红 (2018). 大豆芽期和苗期耐盐性评价指标筛选. 大豆科学 37, 215-223. |
[15] | 孙浩月 (2021). 盐胁迫对普通菜豆(Phaseolus vulgaris L.)萌发期生长的影响及其耐盐性分子机制. 硕士论文. 大庆: 黑龙江八一农垦大学. pp. 9-10. |
[16] | 孙莎莎, 巩彪, 温丹, 王秀峰, 魏珉, 杨凤娟, 李岩, 史庆华 (2016). 对羟基苯甲酸胁迫下褪黑素对黄瓜胚根生理生化特性的影响. 应用生态学报 27, 897-903. |
[17] | 孙玉珺 (2019). 玉米芽期抗冷性筛选及低温胁迫下油菜素内酯对幼苗的调控效应研究. 硕士论文. 哈尔滨: 东北农业大学. pp. 15-16. |
[18] | 王斌, 张腾霄, 刘超群, 祖余洋, 李艳芳, 孟祥才 (2022). 非生物胁迫对药用植物活性氧代谢影响的研究进展. 现代中药研究与实践 36(3), 94-98. |
[19] | 王鹤潼, 贾春云, 张延召, 赵强, 李晓军, 巩宗强, 刘宛 (2021). 植物DNA错配修复系统响应Cd胁迫的研究进展. 农业环境科学学报 40, 700-711. |
[20] | 杨新元 (2019). 外源褪黑素对干旱胁迫下向日葵幼苗生长、光合及抗氧化系统的影响. 华北农学报 34(4), 113-121. |
[21] | 钟鸣, 陈琢, 刘宛, 李培军, 台培东 (2012). 逆境胁迫下植物DNA损伤和DNA错配修复研究进展. 生态学杂志 31, 2404-2411. |
[22] | 邹京南 (2019). 外源褪黑素对干旱胁迫下大豆光合及生长的影响. 硕士论文. 大庆: 黑龙江八一农垦大学. pp. 32-35. |
[23] | Arnao MB, Hernández-Ruiz J (2018). Melatonin and its relationship to plant hormones. Ann Bot 121, 195-207. |
[24] | Beaver JS, Osorno JM (2009). Achievements and limitations of contemporary common bean breeding using conventional and molecular approaches. Euphytica 168, 145-175. |
[25] | Bray CM, West CE (2005). DNA repair mechanisms in plants: crucial sensors and effectors for the maintenance of genome integrity. New Phytol 168, 511-528. |
[26] | Cakmak I, Marschner H (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98, 1222-1227. |
[27] | Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y (2020). Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol 62, 25-54. |
[28] | Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014). The role of gibberellin signaling in plant responses to abiotic stress. J Exp Biol 217, 67-75. |
[29] | Djanaguiraman M, Sheeba JA, Durga DD, Bangarusamy U (2009). Cotton leaf senescence can be delayed by nitrophenolate spray through enhanced antioxidant defence system. J Agron Crop Sci 195, 213-224. |
[30] | Elstner EF, Heupel A (1976). Inhibition of nitrite formation from hydroxylammonium chloride: a simple assay for superoxide dismutase. Anal Biochem 70, 616-620. |
[31] | Farhangi-Abriz S, Torabian S (2017). Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicol Environ Saf 137, 64-70. |
[32] | Ganesan K, Xu BJ (2017). Polyphenol-rich dry common beans (Phaseolus vulgaris L.) and their health benefits. Int J Mol Sci 18, 2331. |
[33] | Han YQ, Gao YM, Li M, Du YL, Zhang YX, Zhang WH, Du JD (2022). The molecular events underpinning cultivar differences in melatonin counteracting salt damage in Phaseolus vulgaris. Funct Plant Biol 49, 201-217. |
[34] | Jan JE, Reiter RJ, Wasdell MB, Bax M (2009). The role of the thalamus in sleep, pineal melatonin production, and circadian rhythm sleep disorders. J Pineal Res 46, 1-7. |
[35] | Kaya C, Okant M, Ugurlar F, Alyemeni MN, Ashraf M, Ahmad P (2019). Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants. Chemosphere 225, 627-638. |
[36] | Lei YB, Yin CY, Li CY (2006). Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiol Plant 127, 182-191. |
[37] | Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W (1958). Isolation of melatonin, the pineal gland factor that lightens melanocytes. Am Chem Soc 80, 2587. |
[38] | Lin CC, Kao CH (1999). NaCl induced changes in ionically bound peroxidase activity in roots of rice seedlings. Plant Soil 216, 147-153. |
[39] | Melis JPM, van Steeg H, Luijten M (2013). Oxidative DNA damage and nucleotide excision repair. Antioxid Redox Signal 18, 2409-2419. |
[40] | Okant M, Kaya C (2019). The role of endogenous nitric oxide in melatonin-improved tolerance to lead toxicity in maize plants. Environ Sci Pollut Res Int 26, 11864-11874. |
[41] | Patterson BD, MacRae EA, Ferguson IB (1984). Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal Biochem 139, 487-492. |
[42] | Popelka JC, Terryn N, Higgins TJV (2004). Gene technology for grain legumes: can it contribute to the food challenge in developing countries? Plant Sci 167, 195-206. |
[43] | Posmyk MM, Balabusta M, Wieczorek M, Sliwinska E, Janas KM (2009). Melatonin applied to cucumber (Cucumis sativus L.) seeds improves germination during chilling stress. J Pineal Res 46, 214-223. |
[44] | Rodriguez C, Mayo JC, Sainz RM, Antolín I, Herrera F, Martín V, Reiter RJ (2004). Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 36, 1-9. |
[45] | Scott TL, Rangaswamy S, Wicker CA, Izumi T (2014). Repair of oxidative DNA damage and cancer: recent progress in DNA base excision repair. Antioxid Redox Signal 20, 708-726. |
[46] | Shabala S (2013). Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112, 1209-1221. |
[47] | Sharif R, Xie C, Zhang HQ, Arnao MB, Ali M, Ali Q, Muhammad I, Shalmani A, Nawaz MA, Chen P, Li YH (2018). Melatonin and its effects on plant systems. Molecules 23, 2352. |
[48] | Singh KP, Roy D (2001). Identification of novel breast tumor- specific mutation(s) in the q11.2 region of chromosome 17 by RAPD/AP-PCR fingerprinting. Gene 269, 33-43. |
[49] | Singh KP, Roy D (2004). Somatic mutations in stilbene estrogen-induced Syrian hamster kidney tumors identified by DNA fingerprinting. J Carcinog 3, 4. |
[50] | Strother S (1988). The role of free radicals in leaf senescence. Gerontology 34, 151-156. |
[51] | Sun CL, Liu LJ, Wang LX, Li BH, Jin CW, Lin XY (2021). Melatonin: a master regulator of plant development and stress responses. J Integr Plant Biol 63, 126-145. |
[52] | Sun CL, Lv T, Huang L, Liu XX, Jin CW, Lin XY (2020). Melatonin ameliorates aluminum toxicity through enhancing aluminum exclusion and reestablishing redox homeo- stasis in roots of wheat. J Pineal Res 68, e12642. |
[53] | Sun YL, Li F, Su N, Sun XL, Zhao SJ, Meng QW (2010). The increase in unsaturation of fatty acids of phosphatidylglycerol in thylakoid membrane enhanced salt tolerance in tomato. Photosynthetica 48, 400-408. |
[54] | Ubbens J, Cieslak M, Prusinkiewicz P, Stavness I (2018). The use of plant models in deep learning: an application to leaf counting in rosette plants. Plant Methods 14, 6. |
[55] | Vafadar F, Amooaghaie R, Ehsanzadeh P, Ghanati F, Sajedi RH (2020). Crosstalk between melatonin and Ca2+/ CaM evokes systemic salt tolerance in Dracocephalum kotschyi. J Plant Physiol 252, 153237. |
[56] | Wang H, Takano T, Liu SK (2018). Screening and evaluation of saline-alkaline tolerant germplasm of rice (Oryza sativa L.) in soda saline-alkali soil. Agronomy 8, 205. |
[57] | Wang LQ, Li Z, Lu MZ, Wang YC (2017). ThNAC13, a NAC transcription factor from Tamarix hispida, confers salt and osmotic stress tolerance to transgenic Tamarix and Arabidopsis. Front Plant Sci 8, 635. |
[58] | Yang YR, Cao YP, Li ZX, Zhukova A, Yang ST, Wang JL, Tang ZH, Cao YH, Zhang YF, Wang DL (2020). Interactive effects of exogenous melatonin and Rhizophagus intraradices on saline-alkaline stress tolerance in Leymus chinensis. Mycorrhiza 30, 357-371. |
[59] | Zahedi SM, Hosseini MS, Abadía J, Marjani M (2020). Melatonin foliar sprays elicit salinity stress tolerance and enhance fruit yield and quality in strawberry (Fragaria × ananassa Duch.). Plant Physiol Biochem 149, 313-323. |
[60] | Zhan HS, Nie XJ, Zhang T, Li S, Wang XY, Du XH, Tong W, Song WN (2019). Melatonin: a small molecule but important for salt stress tolerance in plants. Int J Mol Sci 20, 709. |
[61] | Zhang JL, Wang P, Long HY, Su SS, Wu YG, Wang HR (2022). Metabolomics analysis reveals the physiological mechanism underlying growth restriction in maize roots under continuous negative pressure and stable water sup- ply. Agric Water Manag 263, 107452. |
[62] | Zhang Q, Li M, Xia CY, Zhang WJ, Yin ZG, Zhang YL (2021). Transcriptome-based analysis of salt-related genes during the sprout stage of common bean (Phaseolus vulgaris) under salt stress conditions. Biotechnol Biotechnol Equip 35, 1086-1098. |
[63] | Zhang Q, Zhang WJ, Yin ZG, Li WJ, Zhao HH, Zhang S, Zhuang L, Wang YX, Zhang WH, Du JD (2020). Genome- and transcriptome-wide identification of C3Hs in common bean (Phaseolus vulgaris L.) and structural and expression-based analyses of their functions during the sprout stage under salt-stress conditions. Front Genet 11, 564607. |
[64] | Zhao Q, Chen SY, Wang GD, Du YL, Zhang ZN, Yu GB, Ren CY, Zhang YX, Du JD (2022). Exogenous melatonin enhances soybean (Glycine max (L.) Merr.) seedling tolerance to saline-alkali stress by regulating antioxidant response and DNA damage repair. Physiol Plant 174, e13731. |
[65] | Zhao Q, Wang HT, Du YL, Rogers HJ, Wu ZX, Jia S, Yao XD, Xie FT, Liu W (2020). MSH2 and MSH6 in mismatch repair system account for soybean (Glycine max (L.) Merr.) tolerance to cadmium toxicity by determining DNA damage response. J Agric Food Chem 68, 1974-1985. |
/
〈 | 〉 |