研究报告

普通菜豆抗菜豆象性状的全基因组关联分析

展开
  • 1中国农业科学院作物科学研究所, 北京 100081
    2曲靖市农业科学院, 曲靖 655000
共同第一作者

收稿日期: 2022-06-30

  录用日期: 2022-09-19

  网络出版日期: 2022-10-09

基金资助

国家自然科学基金(32072017);国家食用豆现代农业产业技术体系(CARS-08)

Genome-wide Association Analysis of Resistance to Acanthoscelides obtectus in Common Bean

Expand
  • 1Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2Qujing Academy of Agricultural Sciences, Qujing 655000, China
These authors contributed equally to this paper

Received date: 2022-06-30

  Accepted date: 2022-09-19

  Online published: 2022-10-09

摘要

普通菜豆(Phaseolus vulgaris)具有丰富的营养价值, 菜豆象(Acanthoscelides obtectus)是危害菜豆的主要害虫, 利用抗虫种质资源防治菜豆象是最安全且经济有效的方法。该研究利用改良的室内人工接虫方法, 对625份普通菜豆种质资源进行2次菜豆象抗性重复鉴定, 筛选出2份抗性稳定且种子受害率均在10%以下的高抗种质。利用种子受害率和蛀孔总数的表型数据, 基于3 767 432个SNP标记进行全基因组关联分析, 鉴定出15个与种子受害率相关的显著关联遗传位点, 8个与蛀孔总数相关的显著关联位点, 解释了4.54%-5.56%的表型变异。在候选位点筛选出包括编码蛋白酶抑制剂、凝集素和过氧化物酶等在内的20个与抗虫防御相关的候选基因。

本文引用格式

李晓明, 王兰芬, 唐永生, 常玉洁, 张菊香, 王述民, 武晶 . 普通菜豆抗菜豆象性状的全基因组关联分析[J]. 植物学报, 2023 , 58(1) : 77 -89 . DOI: 10.11983/CBB22138

Abstract

Common beans (Phaseolus vulgaris) have rich nutritional value, and Acanthoscelides obtectus are major pests during the storage. It is a safe, economical and effective method to control the damage of A. obtectus by screening the germplasm resources of bruchid resistance. In this study, a total of 625 common bean germplasms were identified for resistance to A. obtectus by using improved indoor artificial inoculation method. Among them, two germplasms showed stable resistance in both two repeated identifications, with the percentage of damaged seeds less than 10%. Genome-wide association analysis was conducted based on 3 767 432 SNP and phenotypic data of the percentage of damaged seeds and the number of perforations from 625 common beans. Fifteen significant QTLs were associated with the percentage of damaged seeds and 8 significant QTLs were associated with the number of perforations, explaining 4.54% to 5.56% of the phenotypic variation. A total of 20 candidate genes were screened from all loci, including the genes encoding protease inhibitors, lectin, peroxidase and so on, which were related to the defense of bruchids.

参考文献

[1] 江兆春, 张忠民, 耿坤, 余杰颖 (2018). 菜豆象入侵我国的风险性评价. 贵州农业科学 46, 47-50.
[2] 阮期平, 周立, 郑远旗 (2000). PGIP在植物抗病方面的研究进展. 植物学通报 17, 60-63.
[3] 申智慧, 刘春, 杨洪, 郑松, 罗全丽, 徐本刚 (2014). 菜豆象发生规律与防治措施. 耕作与栽培 3, 47-48.
[4] 宋凤鸣, 郑重, 葛起新 (1992). 富含羟脯氨酸糖蛋白在植物-病原物相互作用中的积累、作用及调控. 植物生理学通讯 28, 141-145.
[5] 孙海燕, 罗兵, 喻德跃 (2005). 次生代谢抗虫基因工程研究进展. 安徽农业科学 33, 1906-1907.
[6] 王辉, 李琳, 梁正, 吴一江 (2013). 菜豆象检疫及防治研究进展. 农业灾害研究 3(9), 8-12.
[7] 吴长松, 冯明义, 李海, 姜府文, 赵芳, 龙贵兴, 丁昭兵, 卢云昌, 彭瑶, 廖华刚, 张国升, 颜兴, 陶惠, 文静, 高强 (2019). 毕节市菜豆象疫情发生危害及储存期防控措施初探. 植物检疫 33, 59-61.
[8] 杨璐, 戴仁怀, 杨洪, 江兆春, 李敏, 杨燕琼 (2022). 甲酸乙酯和异硫氰酸甲酯混用对菜豆象的熏蒸活性研究. 山地农业生物学报 41, 79-83.
[9] 杨乃博, 伍苏然, 沈林波, 张树珍, 杨本鹏 (2014). 植物抗虫性研究概况. 热带农业科学 34(9), 61-68, 89.
[10] 周晓宇, 陈杰, 杨敬, 黄海涛, 宋翔 (2010). 植物凝集素及其在抗虫基因工程中的应用. 山地农业生物学报 29, 255-260.
[11] Apostolova ED, Palagacheva NG, Svetleva DL, Mateeva AV (2013). Investigations on the resistance of some Bulgarian common bean genotypes towards bean weevil (Acanthoscelides obtectus Say). J Cent Eur Agric 14, 1547-1557.
[12] Azizoglu U (2018). Biochemical properties of Turkish common beans and their resistance against bean weevil Acanthoscelides obtectus (Coleoptera: Bruchidae). Ar-thropod-plant Inte 12, 283-290.
[13] Blair MW, Mu?oz C, Buendía HF, Flower J, Bueno JM, Cardona C (2010a). Genetic mapping of microsatellite markers around the Arcelin bruchid resistance locus in common bean. Theor Appl Genet 121, 393-402.
[14] Blair MW, Prieto S, Díaz LM, Buendía HF, Cardona C (2010b). Linkage disequilibrium at the APA insecticidal seed protein locus of common bean (Phaseolus vulgaris L.). BMC Plant Biol 10, 79.
[15] Bradbury PJ, Zhang ZW, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633-2635.
[16] Buchler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li HH, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Villeda HS, da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu JM, Zhang ZW, Kresovich S, Mcmullen MD (2009). The genetic architecture of maize flowering time. Science 325, 714-718.
[17] Chen KC, Lin CY, Kuan CC, Sung HY, Chen CS (2002). A novel defensin encoded by a mungbean cDNA exhibits insecticidal activity against bruchid. J Agric Food Chem 50, 7258-7263.
[18] Cormier F, Le Gouis J, Dubreuil P, Lafarge S, Praud S (2014). A genome-wide identification of chromosomal re-gions determining nitrogen use efficiency components in wheat (Triticum aestivum L.). Theor Appl Genet 127, 2679-2693.
[19] De Andrade EKV, Rodrigues R, da Costa Vieira Bard G, da Silva Pereira L, Baptista KEV, Cavalcanti TFM, Oliveira AEA, Souza TAM, Gomes VM (2020). Identifi-cation, biochemical characterization and biological role of defense proteins from common bean genotypes seeds in response to Callosobruchus maculatus infestation. J Stored Prod Res 87, 101580.
[20] Duan CX, Zhu ZD, Li WC, Bao SY, Wang XM (2017). Ge-netic diversity and differentiation of Acanthoscelides ob-tectus Say (Coleoptera: Bruchidae) populations in China. Agric For Entomol 19, 113-121.
[21] Duarte MAG, Cabral GB, Ibrahim AB, Arag?o FJL (2018). An overview of the APA locus and Arcelin proteins and their biotechnological potential in the control of bruchids. Agri Gene 8, 57-62.
[22] Gautam AK, Shrivastava N, Sharma B, Bhagyawant SS (2018). Current scenario of legume lectins and their prac-tical applications. J Crop Sci Biotechnol 21, 217-227.
[23] Goossens A, Quintero C, Dillen W, DeRycke R, Valor JF, De Clercq J, Van Montagu M, Cardona C, Angenon G (2000). Analysis of bruchid resistance in the wild common bean accession G02771: no evidence for insecticidal ac-tivity of Arcelin 5. J Exp Bot 51, 1229-1236.
[24] Gupta M, Sharma P, Nath AK (2014). Purification of a novel α-amylase inhibitor from local Himalayan bean (Phaseo-lus vulgaris) seeds with activity towards bruchid pests and human salivary amylase. J Food Sci Technol 51, 1286-1293.
[25] Hategekimana A, Erler F (2020). Fecundity and fertility inhibition effects of some plant essential oils and their major components against Acanthoscelides obtectus Say (Coleoptera: Bruchidae). J Plant Dis Protect 127, 615-623.
[26] Huang XH, Zhao Y, Wei XH, Li CY, Wang AH, Zhao Q, Li WJ, Guo YL, Deng LW, Zhu CR, Fan DL, Lu YQ, Weng QJ, Liu KY, Zhou TY, Jing YF, Si LZ, Dong GJ, Huang T, Lu TT, Feng Q, Qian Q, Li JY, Han B (2012). Geno-me-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44, 32-39.
[27] Iturralde-García RD, Casta?é C, Wong-corral FJ, Riu-davets J (2020). Biological control of Acanthoscelides obtectus and Zabrotes subfasciatus in stored dried beans. BioControl 65, 693-701.
[28] Jia MJ, Yang LJ, Zhang W, Rosewarne G, Li JH, Yang EN, Chen L, Wang WX, Liu YK, Tong HW, He WJ, Zhang YQ, Zhu ZW, Gao CB (2020). Genome-wide as-sociation analysis of stripe rust resistance in modern Chinese wheat. BMC Plant Biol 20, 491.
[29] Jiménez JC, de la Fuente M, Ordás B, Domínguez LEG, Malvae RA (2017). Resistance categories to Acanthosce-lides obtectus (Coleoptera: Bruchidae) in tepary bean (Phaseolus acutifolius), new sources of resistance for dry bean (Phaseolus vulgaris) breeding. Crop Prot 98, 255-266.
[30] Joshi J, Pandurangan S, Diapari M, Marsolais F (2017). Comparison of gene families:seed storage and other seed proteins. In: de la Vega MP, Santalla M, Marsolais F, eds. The Common Bean Genome. Cham: Springer. pp. 201-217.
[31] Kamfwa K, Beaver JS, Cichy KA, Kelly JD (2018). QTL mapping of resistance to bean weevil in common bean. Crop Sci 58, 2370-2378.
[32] Kornegay JL, Cardona C (1991). Inheritance of resistance to Acanthoscelides obtectus in a wild common bean ac-cession crossed to commercial bean cultivars. Euphytica 52, 103-111.
[33] Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, Zwonitzer JC, Kresovich S, McMullen MD, Ware D, Balint-Kurti PJ, Holland JB (2011). Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested as-sociation mapping population. Nat Genet 43, 163-168.
[34] Kusolwa PM, Myers JR (2011). Seed storage proteins ARL2 and its variants from the apalocus of wild tepary bean G40199 confers resistance to Acanthoscelides ob-tectus when expressed in common beans. Afr Crop Sci J 19, 255-265.
[35] Kusolwa PM, Myers JR, Porch TG, Trukhina Y, González-Vélez A, Beaver JS (2016). Registration of AO- 1012-29-3-3A red kidney bean germplasm line with bean weevil, BCMV, and BCMNV resistance. J Plant Regist 10, 149-153.
[36] Li B, Chen SL, Qin C, Xiao J (2016). Research progress on germplasm resources of common bean. Agric Sci Technol 17, 2572-2577.
[37] Li XM, Tang YS, Wang LF, Chang YJ, Wu J, Wang SM (2022). QTL mapping and identification of genes associated with the resistance to Acanthoscelides obtectus in cultivated common bean using a high-density genetic linkage map. BMC Plant Biol 22, 260.
[38] Macedo MLR, das Gra?as MachadoFreire M, da Silva MBR, Coelho LCB (2007). Insecticidal action of Bauhinia monandra leaf lectin (BmoLL) against Anagasta kuehniella (Lepidoptera: Pyralidae), Zabrotes subfasciatus and Callosobruchus maculatus (Coleoptera: Bruchidae). Comp Biochem Physiol A Mol Integr Physiol 146, 486-498.
[39] Mutungi C, Affognon HD, Njoroge AW, Manono J, Baributsa D, Murdock LL (2015). Triple-layer plastic bags protect dry common beans (Phaseolus vulgaris) against damage by Acanthoscelides obtectus (Coleoptera: Chrysomelidae) during storage. J Econ Entomol 108, 2479-2488.
[40] Oliva MLV, Silva MCC, Sallai RC, Brito MV, Sampaio MU (2010). A novel subclassification for Kunitz proteinase in-hibitors from leguminous seeds. Biochimie 92, 1667-1673.
[41] Oliveira AS, Migliolo L, Aquino RO, Ribeiro JKC, Macedo LLP, Andrade LBS, Bemquerer MP, Santos EA, Kiyota S, de Sales MP (2007). Purification and characterization of a trypsin-papain inhibitor from Pithecelobium dumosum seeds and its in vitro effects towards digestive enzymes from insect pests. Plant Physiol Biochem 45, 858-865.
[42] Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, MallerJ, Sklar P, Daly MJ, Sham PC (2007). PLINK: a tool set for whole-ge-nome association and population-based linkage analyses. Am J Hum Genet 81, 559-575.
[43] Rakotoson T, Dusserre J, Letourmy P, Frouin J, Ratsimiala IR, Rakotoarisoa NV, Cao TV, Brocke KV, Ramanantsoanirina A, Ahmadi N, Raboin LM (2021). Genome-wide association study of nitrogen use efficiency and agronomic traits in upland rice. Rice Sci 28, 379-390.
[44] Santino A, Valsasina B, Lioi L, Vitale A, Bollini R (1991). Bean (Phaseolus vulgaris L.) seed lectins: a novel elec-trophoretic variant of Arcelin. Plant Physiol 10, 7-11.
[45] Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, Jenkins J, Shu SQ, Song QJ, Chavarro C, Torres-Torres M, Geffroy V, Moghaddam SM, Gao DY, Abernathy B, Barry K, Blair M, Brick MA, Chovatia M, Gepts P, Goodstein DM, Gonzales M, Hellsten U, Hyten DL, Jia GF, Kelly JD, Kudrna D, Lee R, Richard MMS, Miklas PN, Osorno JM, Rodrigues J, Thareau V, Urrea CA, Wang M, Yu Y, Zhang M, Wing RA, Cregan PB, Rokhsar DS, Jackson SA (2014). A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46, 707-713.
[46] Schroeder HE, Gollasch S, Moore A, Tabe LM, Craig S, Hardie DC, Chrispeels MJ, Spencer D, Higgins TJV (1995). Bean α-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.). Plant Physiol 107, 1233-1239.
[47] Shade RE, Pratt RC, Pomeroy MA (1987). Development and mortality of the bean weevil, Acanthoscelides obtec-tus (Coleoptera: Bruchidae), on mature seeds of tepary beans, Phaseolus acutifolius, and common beans, Phaseolus vulgaris. Environ Entomol 16, 1067-1070.
[48] Smith MR, Rao IM (2021). Common bean. In: Sadras VO, Calderini DF, eds. Crop Physiology Case Histories for Major Crops. London: Academic Press. pp. 384-406.
[49] Velten G, Rott AS, Cardona C, Dorn S (2007). The inhibi-tory effect of the natural seed storage protein Arcelin on the development of Acanthoscelides obtectus. J Stored Prod Res 43, 550-557.
[50] Visscher PM, Brown MA, McCarthy MI, Yang J (2012). Five years of GWAS discovery. Am J Hum Genet 90, 7-24.
[51] Wu J, Wang LF, Fu JJ, Chen JB, Wei SH, Zhang SL, Zhang J, Tang YS, Chen ML, Zhu JF, Lei L, Geng QH, Liu CL, Wu L, Li XM, Wang XL, Wang Q, Wang ZL, Xing SL, Zhang HK, Blair MW, Wang SM (2020). Resequencing of 683 common bean genotypes identifies yield component trait associations across a north-south cline. Nat Genet 52, 118-125.
[52] Yin LL, Zhang HH, Tang ZS, Xu JY, Yin D, Zhang ZW, Yuan XH, Zhu MJ, Zhao SH, Li XY, Liu XL (2021). rMVP: a memory-efficient, visualization-enhanced, and parallel- accelerated tool for genome-wide association study. Ge-nom Proteom Bioinf 19, 619-628.
[53] Yuste-Lisbona FJ, González AM, Capel C, García-Alcázar M, Capel J, De Ron AM, Lozano R, Santalla M (2014). Genetic analysis of single-locus and epistatic QTLs for seed traits in an adapted × nu?a RIL population of common bean (Phaseolus vulgaris L.). Theor Appl Genet 127, 897-912.
[54] Zaugg I, Magni C, Panzeri D, Daminati MG, Bollini R, Benrey B, Bacher S, Sparvoli F (2013). QUES, a new Phaseolus vulgaris genotype resistant to common bean weevils, contains the Arcelin-8 allele coding for new lectin-related variants. Theor Appl Genet 126, 647-661.
文章导航

/