·评述· 饲草生物学专辑

黑麦草生物学研究进展

展开
  • 1广东省农业科学院作物研究所/广东省农作物遗传改良重点实验室, 广州 510640
    2中国农业大学, 北京 100193
*E-mail: caihw@cau.edu.cn

收稿日期: 2022-07-20

  录用日期: 2022-09-19

  网络出版日期: 2022-09-27

基金资助

国家自然科学基金(31571733)

Recent Progress in Biology of Genus Lolium

Expand
  • 1Crops Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Crop Genetic Improvement, Guangzhou 510640, China
    2China Agricultural University, Beijing 100193, China

Received date: 2022-07-20

  Accepted date: 2022-09-19

  Online published: 2022-09-27

摘要

黑麦草属(Lolium)和羊茅属(Festuca)包含冷季型牧草和草坪草等诸多重要草种, 如意大利黑麦草(L. multiflorum)、多年生黑麦草(L. perenne)、高羊茅(F. arundinacea)及草地羊茅(F. pratensis)。黑麦草产量高、适应性强、营养丰富、适口性好且消化率高, 可作为干草和青贮饲料, 是一种优质牧草。但由于其在我国的栽培受地理因素限制, 目前黑麦草在我国草牧业中所占比例很小。为提高黑麦草种植比例, 利用分子育种手段选育优良品种是我国黑麦草研究的重点方向之一。该文系统总结了黑麦草-羊茅复合体, 特别是黑麦草的研究进展, 包括分类与进化、分子标记开发、连锁图谱构建、重要农艺性状的数量性状位点(QTL)定位和全基因组关联分析(GWAS), 以及基因组测序、转录组分析、基因克隆和品种培育等, 并提出一些需要解决的生物学问题, 旨在为进一步加强黑麦草基础生物学研究和分子育种提供参考。

本文引用格式

谭文清, 陈军, 才宏伟 . 黑麦草生物学研究进展[J]. 植物学报, 2022 , 57(6) : 802 -813 . DOI: 10.11983/CBB22161

Abstract

The genera of Lolium and Festuca include many cool season forage grasses and turf species, such as Italian ryegrass (L. multiflorum), perennial ryegrass (L. perenne), tall fescue (F. arundinacea) and meadow fescue (F. pratensis). The ryegrass can be used as hay and silage, due to its high yield, broad adaptability, rich nutrition, good palatability, and high digestibility; and it was considered as a high-quality feed. But because its cultivation region in China is limited by geography factors, the current proportion of ryegrass in China’s grass pasture industry is still very small. In order to increase the proportion of ryegrass cultivation, the use of molecular breeding methods to breed excellent varieties maybe one of the key directions. In this review, we summarized recent progress in the Lolium-Festuca complex, especially in Lolium, including classification and evolution study, molecular marker development, linkage map construction, quantitative trait locus (QTL) and genome wide association study (GWAS) for important agronomic traits, genome sequences, transcriptome analysis, gene cloning and variety breeding. We also brought up some biological issues in Lolium species that need to be resolved, and try to provide some reference for further strengthening the basic biological research and molecular breeding of ryegrass.

参考文献

[1] 刘晓强, 赵海滨, 李新玲, 张延明 (2020). 多年生黑麦草分子标记应用及基因组研究进展. 分子植物育种 18, 473-481.
[2] 谢文刚, 刘文献, 张建全, 王彦荣 (2014). 牧草分子遗传连锁图谱及其应用. 草业科学 31, 1147-1159.
[3] Abeynayake SW, Byrne S, Nagy I, Jonavi?ien? K, Etzerodt TP, Boelt B, Asp T (2015). Changes in Lolium perenne transcriptome during cold acclimation in two genotypes adapted to different climatic conditions. BMC Plant Biol 15, 250.
[4] Alm V, Fang C, Busso CS, Devos KM, Vollan K, Grieg Z, Rognli OA (2003). A linkage map of meadow fescue (Festuca pratensis Huds.) and comparative mapping with other Poaceae species. Theor Appl Genet 108, 25-40.
[5] Armstead IP, Sk?t L, Turner LB, Sk?t K, Donnison IS, Humphreys MO, King IP (2005). Identification of perennial ryegrass (Lolium perenne (L.)) and meadow fescue (Festuca pratensis (Huds.)Se1) and barley HvCO1 CONSTANS-like genes through comparative mapping and microsynteny. New Phytol 167, 239-247.
[6] Armstead IP, Turner LB, Farrell M, Sk?t L, Gomez P, Montoya T, Donnison IS, King IP, Humphreys MO (2004). Synteny between a major heading-date QTL in perennial ryegrass (Lolium perenne L.) and the Hd3 heading-date locus in rice. Theor Appl Genet 108, 822-828.
[7] Armstead IP, Turner LB, Marshall AH, Humphreys MO, King IP, Thorogood D (2008). Identifying genetic components controlling fertility in the outcrossing grass species perennial ryegrass (Lolium perenne) by quantitative trait loci analysis and comparative genetics. New Phytol 178, 559-571.
[8] Arojju SK, Barth S, Milbourne D, Conaghan P, Velmurugan J, Hodkinson TR, Byrne SL (2016). Markers associated with heading and aftermath heading in perennial ryegrass full-sib families. BMC Plant Biol 16, 160.
[9] Baldinger L, Baumung R, Zollitsch W, Knaus WF (2011). Italian ryegrass silage in winter feeding of organic dairy cows: forage intake, milk yield and composition. J Sci Food Agric 91, 435-442.
[10] Baldwin JC, Dombrowski JE (2006). Evaluation of Lolium temulentum as a model grass species for the study of salinity stress by PCR-based subtractive suppression hybridization analysis. Plant Sci 171, 459-469.
[11] Balfourier F, Imbert C, Charmet G (2000). Evidence for phylogeographic structure in Lolium species related to the spread of agriculture in Europe. A cpDNA study. Theor Appl Genet 101, 131-138.
[12] Barre P, Moreau L, Mi F, Turner L, Gastal F, Julier B, Ghesquière M (2009). Quantitative trait loci for leaf length in perennial ryegrass (Lolium perenne L.). Grass Forage Sci 64, 310-321.
[13] Begheyn RF, Yates SA, Sykes T, Studer B (2018). Genetic loci governing androgenic capacity in perennial ryegrass (Lolium perenne L.).G3 8, 1897-1908.
[14] Bennett SJ, Hayward MD, Marshall DF (2000). Morphological differentiation in four species of the genus Lolium. Genet Resour Crop Evol 47, 247-255.
[15] Bert PF, Charmet G, Sourdille P, Hayward MD, Balfourier F (1999). A high-density molecular map for ryegrass (Lolium perenne) using AFLP markers. Theor Appl Genet 99, 445-452.
[16] Bulinska-Radomska Z, Lester RN (1985). Relationships between five species of Lolium (Poaceae). Plant Syst Evol 148, 169-175.
[17] Byrne S, Guiney E, Barth S, Donnison I, Mur LAJ, Milbourne D (2009). Identification of coincident QTL for days to heading, spike length and spikelets per spike in Lolium perenne L. Euphytica 166, 61-70.
[18] Byrne SL/td> Byrne SL, Foito A, Hedley PE, Morris JA, Stewart D, Barth S (2011). Early response mechanisms of perennial ryegrass (Lolium perenne) to phosphorus deficiency. Ann Bot 107, 243-254.
[19] Byrne SL, Nagy I, Pfeifer M, Armstead I, Swain S, Studer B, Mayer K, Campbell JD, Czaban A, Hentrup S, Panitz F, Bendixen C, Hedegaard J, Caccamo M, Asp T (2015). A synteny-based draft genome sequence of the forage grass Lolium perenne. Plant J 84, 816-826.
[20] Catalán P, Torrecilla P, Rodr??guez JAL, Olmstead RG (2004). Phylogeny of the festucoid grasses of subtribe Loliinae and allies (Poeae, Pooideae) inferred from ITS and trnL-F sequences. Mol Phylogenet Evol 31, 517-541.
[21] Charmet G, Balfourier F (1994). Isozyme variation and species relationships in the genus Lolium L. (ryegrasses, Graminaceae). Theor Appl Genet 87, 641-649.
[22] Charmet G, Balfourier F, Chatard V (1996). Taxonomic relationships and interspecific hybridization in the genus Lolium (grasses). Genet Resour Crop Evol 43, 319-327.
[23] Charmet G, Ravel C, Balfourier F (1997). Phylogenetic analysis in the Festuca-Lolium complex using molecular markers and ITS rDNA. Theor Appl Genet 94, 1038-1046.
[24] Cheng YJ, Ma X, Zhou K, Humphreys MW, Zhang XQ (2016a). Phylogenetic analysis of Festuca-Lolium complex using SRAP markers. Genet Resour Crop Evol 63, 7-18.
[25] Cheng YJ, Zhou K, Humphreys MW, Harper JA, Ma X, Zhang XQ, Yan HD, Huang LK (2016b). Phylogenetic relationships in the Festuca-Lolium complex (Loliinae; Poaceae): new insights from chloroplast sequences. Front Ecol Evol 4, 89.
[26] Clayton WD, Renvoize SA (1986). Genera Graminum- grasses of the world. Kew Bull Add Ser 2, 1-196.
[27] Cogan NOI, Ponting RC, Vecchies AC, Drayton MC, George J, Dracatos PM, Dobrowolski MP, Sawbridge TI, Smith KF, Spangenberg GC, Forster JW (2006). Gene-associated single nucleotide polymorphism discovery in perennial ryegrass (Lolium perenne L.). Mol Genet Genomics 276, 101-112.
[28] Cogan NOI, Smith KF, Yamada T, Francki MG, Vecchies AC, Jones ES, Spangenberg GC, Forster JW (2005). QTL analysis and comparative genomics of herbage quality traits in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 110, 364-380.
[29] Copetti D, Kuon JE, Yates S, K?lliker R, Studer B (2019). Characterization of a Lolium multiflorum diploid assembly. In: Proceedings of the Plant and Animal Genome XXVII Conference. San Diego: ETH. pp.W591.
[30] Copetti D, Yates SA, Vogt MM, Russo G, Grieder C, K?lliker R, Studer B (2021). Evidence for high intergenic sequence variation in heterozygous Italian ryegrass (Lolium multiflorum Lam.) genome revealed by a high-quality draft diploid genome assembly. BioRxiv doi: 10.1101/2021.05.05.442707.
[31] Cropano C, Manzanares C, Yates S, Copetti D, Do Canto J, Lübberstedt T, Koch M, Studer B (2021). Identification of candidate genes for self-compatibility in perennial ryegrass (Lolium perenne L.). Front Plant Sci 12, 707901.
[32] Curley J, Sim SC, Warnke S, Leong S, Barker R, Jung G (2005). QTL mapping of resistance to gray leaf spot in ryegrass. Theor Appl Genet 111, 1107-1117.
[33] Dombrowski JE, Baldwin JC, Martin RC (2008). Cloning and characterization of a salt stress-inducible small GTPase gene from the model grass species Lolium temulentum. J Plant Physiol 165, 651-661.
[34] Easton HS (2007). Grasses and Neotyphodium endophytes: co-adaptation and adaptive breeding. Euphytica 154, 295-306.
[35] Evans LT, King RW, Chu A, Mander LN, Pharis RP (1990). Gibberellin structure and florigenic activity in Lolium temulentum, a long-day plant. Planta 182, 97-106.
[36] Farrell JD, Byrne S, Paina C, Asp T (2014). De novo assembly of the perennial ryegrass transcriptome using an RNA-Seq strategy. PLoS One 9, e103567.
[37] Faville MJ, Jahufer MZZ, Hume DE, Cooper BM, Pennell CGL, Ryan DL, Easton HS (2012). Quantitative trait locus mapping of genomic regions controlling herbage yield in perennial ryegrass. New Zeal J Agric Res 55, 263-281.
[38] Faville MJ, Vecchies AC, Schreiber M, Drayton MC, Hughes LJ, Jones ES, Guthridge KM, Smith KF, Sawbridge T, Spangenberg GC, Bryan GT, Forster JW (2004). Functionally associated molecular genetic marker map construction in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 110, 12-32.
[39] Foito A, Hackett CA, Stewart D, Velmurugan J, Milbourne D, Byrne SL, Barth S (2017). Quantitative trait loci associated with different polar metabolites in perennial ryegrass-providing scope for breeding towards increasing certain polar metabolites. BMC Genet 18, 84.
[40] Frei D, Veekman E, Grogg D, Stoffel-Studer I, Morishima A, Shimizu-Inatsugi R, Yates S, Shimizu KK, Frey JE, Studer B, Copetti D (2021). Ultralong Oxford Nanopore reads enable the development of a reference-grade perennial ryegrass genome assembly. Genome Biol Evol 13, evab159.
[41] Fu ZY, Song JC, Zhao JQ, Jameson PE (2019). Identification and expression of genes associated with the abscission layer controlling seed shattering in Lolium perenne. AoB Plants 11, ply076.
[42] Gaut BS, Tredway LP, Kubik C, Gaut RL, Meyer W (2000). Phylogenetic relationships and genetic diversity among members of the Festuca-Lolium complex (Poaceae) based on ITS sequence data. Plant Syst Evol 224, 33-53.
[43] Gill GP, Wilcox PL, Whittaker DJ, Winz RA, Bickerstaff P, Echt CE, Kent J, Humphreys MO, Elborough KM, Gardner RC (2006). A framework linkage map of perennial ryegrass based on SSR markers. Genome 49, 354-364.
[44] Gocal GFW, King RW, Blundell CA, Schwartz OM, Andersen CH, Weigel D (2001). Evolution of floral meristem identity genes. Analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis. Plant Phy- siol 125, 1788-1801.
[45] Gocal GFW, Poole AT, Gubler F, Watts RJ, Blundell C, King RW (1999). Long-day up-regulation of a GAMYB gene during Lolium temulentum inflorescence formation. Plant Physiol 119, 1271-1278.
[46] Grattapaglia D, Sederoff R (1994). Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137, 1121-1137.
[47] Guan XL, Hirata M, Ding CL, Xu NX, Yuyama N, Tan LB, Fu YC, Wang JP, Cai HW (2014). Genetic linkage map of Lolium multiflorum Lam. constructed from a BC1 population derived from an interspecific hybridization, L. multiflorum × Lolium temulentum L. × L. temulentum. Grassl Sci 60, 142-149.
[48] Guan XL, Yuyama N, Stewart A, Ding CL, Xu NX, Kiyoshi T, Cai HW (2017). Genetic diversity and structure of Lolium species surveyed on nuclear simple sequence repeat and cytoplasmic markers. Front Plant Sci 8, 584.
[49] Hand ML, Cogan NO, Stewart AV, Forster JW (2010). Evolutionary history of tall fescue morphotypes inferred from molecular phylogenetics of the Lolium-Festuca species complex. BMC Evol Biol 10, 303.
[50] Hayward MD, Forster JW, Jones JG, Dolstra O, Evans C, McAdam NJ, Hossain KG, Stammers M, Will J, Humphreys MO, Evans GM (1998). Genetic analysis of Lolium. I. Identification of linkage groups and the establishment of a genetic map. Plant Breed 117, 451-455.
[51] Hayward MD, Mcadam NJ, Jones JG, Evans C, Evans GM, Forster JW, Ustin A, Hossain KG, Quader B, Stammers M, Will JK (1994). Genetic markers and the selection of quantitative traits in forage grasses. Euphytica 77, 269-275.
[52] Hegarty M, Yadav R, Lee M, Armstead I, Sanderson R, Scollan N, Powell W, Sk?t L (2013). Genotyping by RAD sequencing enables mapping of fatty acid composition traits in perennial ryegrass (Lolium perenne (L.)). Plant Biotechnol J 11, 572-581.
[53] Hirata M, Cai HW, Inoue M, Yuyama N, Miura Y, Komatsu T, Takamizo T, Fujimori M (2006). Development of simple sequence repeat (SSR) markers and construction of an SSR-based linkage map in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet 113, 270-279.
[54] Hirata M, Kiyoshi K, Yuyama N, Cai HW (2011). Development of simple sequence repeat markers for inbreeding Lolium species. Grassl Sci 57, 35-45.
[55] Hu ZY, Zhang YF, He Y, Cao QQ, Zhang T, Lou LQ, Cai QS (2020). Full-length transcriptome assembly of Italian ryegrass root integrated with RNA-Seq to identify genes in response to plant cadmium stress. Int J Mol Sci 21, 1067.
[56] Inoue M, Gao ZS, Cai HW (2004a). QTL analysis of lodging resistance and related traits in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet 109, 1576-1585.
[57] Inoue M, Gao ZS, Hirata M, Fujimori M, Cai HW (2004b). Construction of a high-density linkage map of Italian ryegrass (Lolium multiflorum Lam.) using restriction fragment length polymorphism, amplified fragment length polymorphism, and telomeric repeat associated sequence markers. Genome 47, 57-65.
[58] Ja?kūn? K, Aleliūnas A, Statkevi?iūt? G, Keme?yt? V, Studer B, Yates S (2020). Genome-wide association study to identify candidate loci for biomass formation under water deficit in perennial ryegrass. Front Plant Sci 11, 570204.
[59] Jensen LB, Andersen JR, Frei U, Xing YZ, Taylor C, Holm PB, Lübberstedt TL (2005a). QTL mapping of vernalization response in perennial ryegrass (Lolium perenne L.) reveals co-location with an orthologue of wheat VRN1. Theor Appl Genet 110, 527-536.
[60] Jensen LB, Muylle H, Arens P, Andersen CH, Holm PB, Ghesquiere M, Julier B, Lübberstedt T, Nielsen KK, de Riek J, Roldán-Ruiz I, Roulund N, Taylor C, Vosman B, Barre P (2005b). Development and mapping of a public reference set of SSR markers in Lolium perenne L. Mol Ecol Notes 5, 951-957.
[61] Jones E, Dupal M, Dumsday J, Hughes L, Forster J (2002a). An SSR-based genetic linkage map for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 105, 577-584.
[62] Jones ES, Dupal MP, K?lliker R, Drayton MC, Forster JW (2001). Development and characterisation of simple sequence repeat (SSR) markers for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 102, 405-415.
[63] Jones ES, Mahoney NL, Hayward MD, Armstead IP, Jones JG, Humphreys MO, King IP, Kishida T, Yamada T, Balfourier F, Charmet G, Forster JW (2002b). An enhanced molecular marker based genetic map of perennial ryegrass (Lolium perenne) reveals comparative relationships with other Poaceae genomes. Genome 45, 282-295.
[64] King J, Thomas A, James C, King I, Armstead I (2013). A DArT marker genetic map of perennial ryegrass (Lolium perenne L.) integrated with detailed comparative mapping information; comparison with existing DArT marker genetic maps of Lolium perenne, L. multiflorum and Festuca pratensis. BMC Genomics 14, 437.
[65] King J, Thorogood D, Edwards KJ, Armstead IP, Roberts L, Sk?t K, Hanley Z, King IP (2008a). Development of a genomic microsatellite library in perennial ryegrass (Lolium perenne) and its use in trait mapping. Ann Bot 101, 845-853. King RW, Mander LN, Asp T, MacMillan CP, Blundell CA, Evans LT (2008b). Selective deactivation of gibberellins below the shoot apex is critical to flowering but not to stem elongation of Lolium. Mol Plant 1, 295-307.
[67] King RW, Moritz T, Evans LT, Junttila O, Herlt AJ (2001). Long-day induction of flowering in Lolium temulentum involves sequential increases in specific gibberellins at the shoot apex. Plant Physiol 127, 624-632.
[68] Knorst V, Yates S, Byrne S, Asp T, Widmer F, Studer B, K?lliker R (2019). First assembly of the gene-space of Lolium multiflorum and comparison to other Poaceae genomes. Grassl Sci 65, 125-134.
[69] Kopecky D, Barto? J, Lukaszewski AJ, Baird JH, ?ernoch V, K?lliker R, Rognli OA, Blois H, Caig V, Lübberstedt T, Studer B, Shaw P, Dole?el J, Kilian A (2009). Development and mapping of DArT markers within the Festuca-Lolium complex. BMC Genomics 10, 473.
[70] Korte A, Farlow A (2013). The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9, 29.
[71] Kubik C, Meyer WA, Gaut BS (1999). Assesing the abundance and polymorphism of simple sequence repeats in perennial ryegrass. Crop Sci 39, 1136-1141.
[72] Li W, Katin-Grazzini L, Gu XB, Wang XJ, El-Tanbouly R, Yer H, Thammina C, Inguagiato J, Guillard K, McAvoy RJ, Wegrzyn J, Gu TT, Li Y (2017). Transcriptome analysis reveals differential gene expression and a possible role of gibberellins in a shade-tolerant mutant of perennial ryegrass. Front Plant Sci 8, 868.
[73] Loos BP (1993). Morphological variation in Lolium (Poaceae) as a measure of species relationships. Plant Syst Evol 188, 87-99.
[74] Maity A, Singh V, Martins MB, Ferreira PJ, Smith GR, Bagavathiannan M (2021). Species identification and morphological trait diversity assessment in ryegrass (Lolium spp.) populations from the Texas Blackland Prairies. Weed Sci 69, 379-392.
[75] Manzanares C, Barth S, Thorogood D, Byrne SL, Yates S, Czaban A, Asp T, Yang BC, Studer B (2016). A gene encoding a DUF247 domain protein cosegregates with the S self-incompatibility locus in perennial ryegrass. Mol Biol Evol 33, 870-884.
[76] Miura Y, Ding CL, Ozaki R, Hirata M, Fujimori M, Takahashi W, Cai HW, Mizuno K (2005). Development of EST-derived CAPS and AFLP markers linked to a gene for resistance to ryegrass blast (Pyricularia sp.) in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet 111, 811-818.
[77] Moon CD, Scott B, Schardl CL, Christensen MJ (2000). The evolutionary origins of Epichlo? endophytes from annual ryegrasses. Mycologia 92, 1103-1118.
[78] Muylle H, Baert J, van Bockstaele E, Moerkerke B, Goetghebeur E, Roldán-Ruiz I (2005). Identification of molecular markers linked with crown rust (Puccinia coronata f. sp. lolii) resistance in perennial ryegrass (Lolium perenne) using AFLP markers and a bulked segregant approach. Euphytica 14, 135-144.
[79] Paina C, Byrne SL, Studer B, Rognli OA, Asp T (2016). Using a candidate gene-based genetic linkage map to identify QTL for winter survival in perennial ryegrass. PLoS One 11, e0152004.
[80] Pearson A, Cogan NOI, Baillie RC, Hand ML, Bandaranayake CK, Erb S, Wang JP, Kearney GA, Gendall AR, Smith KF, Forster JW (2011). Identification of QTLs for morphological traits influencing waterlogging tolerance in perennial ryegrass (Lolium perenne L.). Theor Appl Ge- net 122, 609-622.
[81] Pfender WF, Slabaugh ME (2013). Pathotype-specific QTL for stem rust resistance in Lolium perenne. Theor Appl Ge- net 126, 1213-1225.
[82] Ponting RC, Drayton MC, Cogan NOI, Dobrowolski MP, Spangenberg GC, Smith KF, Forster JW (2007). SNP discovery, validation, haplotype structure and linkage disequilibrium in full-length herbage nutritive quality genes of perennial ryegrass (Lolium perenne L.). Mol Genet Genomics 278, 585-597.
[83] Saha MC, Mian R, Zwonitzer JC, Chekhovskiy K, Hopkins AA (2005). An SSR- and AFLP-based genetic linkage map of tall fescue (Festuca arundinacea Schreb.). Theor Appl Genet 110, 323-336.
[84] Schardl CL, Leuchtmann A, Spiering MJ (2004). Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55, 315-340.
[85] Schejbel B, Jensen LB, Asp T, Xing Y, Lübberstedt T (2008). Mapping of QTL for resistance to powdery mildew and resistance gene analogues in perennial ryegrass. Plant Breed 127, 368-375.
[86] Scholz H, Stierstorfer CH, Gaisberg MV (2000). Lolium edwardii sp. nova (Gramineae) and its relationship with Schedonorus sect. Plantynia Dumort. Feddes Repert 111, 561-565.
[87] Senda T, Hiraoka Y, Tominaga T (2006). Inheritance of seed shattering in Lolium temulentum and L. persicum hybrids. Genet Resour Crop Evol 53, 449-451.
[88] Senda T, Kubo N, Hirai M, Tominaga T (2004). Development of microsatellite markers and their effectiveness in Lolium temulentum. Weed Res 44, 136-141.
[89] Shinozuka H, Cogan NOI, Smith KF, Spangenberg GC, Forster JW (2010). Fine-scale comparative genetic and physical mapping supports map-based cloning strategies for the self-incompatibility loci of perennial ryegrass (Lolium perenne L.). Plant Mol Biol 72, 343-355.
[90] Slatter LM, Barth S, Manzanares C, Velmurugan J, Place I, Thorogood D (2021). A new genetic locus for self- compatibility in the outcrossing grass species perennial ryegrass (Lolium perenne). Ann Bot 127, 715-722.
[91] Studer B, Boller B, Bauer E, Posselt UK, Widmer F, K?lliker R (2007). Consistent detection of QTLs for crown rust resistance in Italian ryegrass (Lolium multiflorum Lam.) across environments and phenotyping methods. Theor Appl Genet 115, 9-17.
[92] Studer B, Boller B, Herrmann D, Bauer E, Posselt UK, Widmer F, K?lliker R (2006a). Genetic mapping reveals a single major QTL for bacterial wilt resistance in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet 113, 661-671.
[93] Studer B, Byrne S, Nielsen RO, Panitz F, Bendixen C, Islam S, Pfeifer M, Lübberstedt T, Asp T (2012). A transcriptome map of perennial ryegrass (Lolium perenne L.). BMC Genomics 13, 140.
[94] Studer B, Jensen LB, Hentrup S, Brazauskas G, K?lliker R, Lübberstedt T (2008). Genetic characterisation of seed yield and fertility traits in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 117, 781-791.
[95] Studer B, K?lliker R, Muylle H, Asp T, Frei U, Roldán- Ruiz I, Barre P, Tomaszewski C, Meally H, Barth S, Sk?t L, Armstead IP, Dolstra O, Lübberstedt T (2010). EST-derived SSR markers used as anchor loci for the construction of a consensus linkage map in ryegrass (Lolium spp.). BMC Plant Biol 10, 177.
[96] Studer B, Widmer F, Enkerli J, K?lliker R (2006b). Development of novel microsatellite markers for the grassland species Lolium multiflorum, Lolium perenne and Festuca pratensis. Mol Ecol Notes 6, 1108-1110.
[97] Takahashi W, Miura Y, Sasaki T, Takamizo T (2014). Identification of a novel major locus for gray leaf spot resistance in Italian ryegrass (Lolium multiflorum Lam.). BMC Plant Biol 14, 303.
[98] Tan WQ, Zhang D, Yuyama N, Chen J, Sugita S, Kawachi T, Cai HW (2021). Quantitative trait loci analysis of nitrate-nitrogen content in Italian ryegrass (Lolium multiflorum Lam.). Euphytica 217, 15.
[99] Terrell EE (1968). A Taxonomic Revision of the Genus Lolium. United States Department of Agriculture. pp. 1-65.
[100] Tomaszewski C, Byrne SL, Foito A, Kildea S, Kopecky D, Dole?el J, Heslop-Harrison JS, Stewart D, Barth S (2012). Genetic linkage mapping in an F2 perennial ryegrass population using DArT markers. Plant Breed 131, 345-349.
[101] Tubbs TB, Chastain TG (2022). Genetic variation for seed retention in accessions and genotypic lines of perennial ryegrass (Lolium perenne L). Crop Sci doi: 10.1002/csc2. 20837.
[102] Tzvelev NN (1989). The system of grasses (Poaceae) and their evolution. Bot Rev 55, 141-203.
[103] Velmurugan J, Milbourne D, Connolly V, Heslop-Harrison JS, Anhalt UCM, Lynch MB, Barth S (2018). An immortalized genetic mapping population for perennial ryegrass: a resource for phenotyping and complex trait mapping. Front Plant Sci 9, 717.
[104] Velmurugan J, Mollison E, Barth S, Marshall D, Milne L, Creevey CJ, Lynch B, Meally H, McCabe M, Milbourne D (2016). An ultra-high density genetic linkage map of perennial ryegrass (Lolium perenne) using genotyping by sequencing (GBS) based on a reference shotgun genome assembly. Ann Bot 118, 71-87.
[105] Wang JG, Zhao JC, Feng S, Zhang JZ, Gong SF, Qiao K, Zhou AM (2020). Comparison of cadmium uptake and transcriptional responses in roots reveal key transcripts from high and low-cadmium tolerance ryegrass cultivars. Ecotoxicol Environ Saf 203, 110961.
[106] Wang KH, Liu YR, Tian JL, Huang KY, Shi TR, Dai XX, Zhang WJ (2017). Transcriptional profiling and identification of heat-responsive genes in perennial ryegrass by RNA-sequencing. Front Plant Sci 8, 1032.
[107] Warnke SE, Barker RE, Jung G, Sim SC, Mian MAR, Saha MC, Brilman LA, Dupal MP, Forster JW (2004). Genetic linkage mapping of an annual × perennial ryegrass population. Theor Appl Genet 109, 294-304.
[108] Wichmann F, Asp T, Widmer F, K?lliker R (2011). Transcriptional responses of Italian ryegrass during interaction with Xanthomonas translucens pv. graminis reveal novel candidate genes for bacterial wilt resistance. Theor Appl Genet 122, 567-579.
[109] Xu B, Li H, Li Y, Yu GH, Zhang J, Huang BR (2018). Characterization and transcriptional regulation of chlorophyll b reductase gene NON-YELLOW COLORING 1associated with leaf senescence in perennial ryegrass (Lolium perenne L.). Environ Exp Bot 149, 43-50.
[110] Xu WW, Sleper DA, Chao S (1995). Genome mapping of polyploid tall fescue (Festuca arundinacea Schreb.) with RFLP markers. Theor Appl Genet 91, 947-955.
[111] Yu GH, Xie ZN, Chen W, Xu B, Huang BR (2022a). Knock down of NON-YELLOW COLOURING 1-like gene or chlo- rophyllin application enhanced chlorophyll accumulation with antioxidant roles in suppressing heat-induced leaf se- nescence in perennial ryegrass. J Exp Bot 73, 429-444.
[112] Yu GH, Xie ZN, Lei SS, Li H, Xu B, Huang BR (2022b). The NAC factor LpNAL delays leaf senescence by repressing two chlorophyll catabolic genes in perennial ryegrass. Plant Physiol 189, 595-610.
[113] Yu GH, Xie ZN, Zhang J, Lei SS, Lin WJ, Xu B, Huang BR (2021). NOL-mediated functional stay-green traits in perennial ryegrass (Lolium perenne L.) involving multifaceted molecular factors and metabolic pathways regulating leaf senescence. Plant J 106, 1219-1232.
[114] Yu JM, Buckler ES (2006). Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17, 155-160.
[115] Yu XQ, Bai GH, Liu SW, Luo N, Wang Y, Richmond DS, Pijut PM, Jackson SA, Yu JM, Jiang YW (2013). Association of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions. J Exp Bot 64, 1537-1551.
[116] Zhang J, Li H, Jiang YW, Li HB, Zhang ZP, Xu ZP, Xu B, Huang BR (2020). Natural variation of physiological traits, molecular markers, and chlorophyll catabolic genes associated with heat tolerance in perennial ryegrass accessions. BMC Plant Biol 20, 520.
[117] Zhang J, Yu GH, Wen WW, Ma XQ, Xu B, Huang BR (2016). Functional characterization and hormonal regulation of the PHEOPHYTINASE gene LpPPH controlling leaf senescence in perennial ryegrass. J Exp Bot 67, 935-945.
文章导航

/

674-3466/bottom_cn.htm"-->