月季红双喜花瓣变色的化学基础及比较转录组分析
收稿日期: 2022-03-12
录用日期: 2022-06-23
网络出版日期: 2022-07-01
基金资助
河南省自然科学基金(212300410360)
The Chemical Composition and Transcriptome Analysis Reveal the Mechanism of Color Formation in Rosa hybrida cv. ‘Double delight’
Received date: 2022-03-12
Accepted date: 2022-06-23
Online published: 2022-07-01
月季(Rosa hybrida)花色丰富, 是世界著名的观赏花卉。月季红双喜因其花瓣的变色特性而在市场上广受欢迎。该研究通过类黄酮和类胡萝卜素靶向代谢并结合转录组分析, 发现红双喜的黄色花瓣呈色主要源于叶绿素、类胡萝卜素以及类黄酮的积累, 红色花瓣呈色主要是花青素苷积累增加且糖苷化的结果。花青素苷合成关键基因CHI、ANS和UFGT, 以及R2R3-MYB家族的AN2-like成员在红色花瓣中的强烈表达是花青素苷积累的分子基础; 类胡萝卜素成分改变及相关基因的表达变化在红双喜花瓣变色过程中也起重要作用, 并且miRNA156可能参与其调控过程。该研究揭示了月季红双喜花瓣变色的分子和化学基础, 研究结果为观赏植物花色分子设计育种提供了重要理论依据。
张和臣, 王慧娟, 李艳敏, 高杰, 袁欣, 王利民, 王校晨, 赵银鸽, 符真珠 . 月季红双喜花瓣变色的化学基础及比较转录组分析[J]. 植物学报, 2022 , 57(5) : 649 -660 . DOI: 10.11983/CBB22049
Rosa species is one of world-famous ornamental flower with very rich colors. Rosa hybrida cv. ‘Double delight’ is very popular in the market due to the color-changing properties of petals. With analysis of the composition of flavonoids and carotenoids, combined with transcriptome analysis, we showed that the red petals were caused by the increasing of glycosylated anthocyanins, and the up-regulation of anthocyanin synthesis genes CHI, ANS and UFGT by R2R3-MYB transcription factor AN2-likes. However, the yellow petals were mainly due to the accumulation of the pigments of chlorophyll, carotenoids and flavonoids. The structural differences of carotenoids and the expression changes of related genes may play an important role in the petals’ discoloration, and miRNA156 might be involved in the regulation. This study revealed a molecular and chemical basis of the petal discoloration in rose Double delight and provided an important basis for the molecule design and breeding of flowers.
Key words: rose; flower color; anthocyanins; carotenoids; molecular regulation
[1] | 李茂福, 杨媛, 王华, 范又维, 孙佩, 金万梅 (2022). 月季中 R2R3-MYB基因RhMYB113c调控花青素苷合成. 园艺学报 49, 1957-1966. |
[2] | 王峰, 杨树华, 刘新艳, 崔娇鹏, 常智慧, 葛红 (2017). 月季种质资源花色多样性及其与花青苷的关系. 园艺学报 44, 1125-1134. |
[3] | 温佳辛, 王超林, 冯慧, 李珊珊, 王亮生, 武荣花, 赵世伟 (2021). 月季花色研究进展. 园艺学报 48, 2044-2056. |
[4] | 张泰然, 张和臣, 武荣花 (2020). 蓝色花形成分子机理研究进展. 植物学报 55, 216-227. |
[5] | 朱满兰, 王亮生, 张会金, 徐彦军, 郑绪辰, 王丽金 (2012). 耐寒睡莲花瓣中花青素苷组成及其与花色的关系. 植物学报 47, 437-453. |
[6] | 邹红竹, 周琳, 韩璐璐, 吕纪杭, 王雁 (2021). 滇牡丹花瓣着色过程中类胡萝卜素成分变化和相关基因表达分析. 园艺学报 48, 1934-1944. |
[7] | Bradley D, Xu P, Mohorianu II, Whibley A, Field D, Tavares H, Couchman M, Copsey L, Carpenter R, Li MM, Li Q, Xue YB, Dalmay T, Coen E (2017). Evolution of flower color pattern through selection on regulatory small RNAs. Science 358, 925-928. |
[8] | Fu ZZ, Jiang H, Chao YC, Dong XY, Yuan X, Wang LM, Zhang J, Xu ML, Wang HJ, Li YM, Gao J, Zhang HC (2021). Three paralogous R2R3-MYB genes contribute to delphinidin-related anthocyanins synthesis in Petunia hybrida. J Plant Growth Regul 40, 1687-1700. |
[9] | Fu ZZ, Shang HQ, Jiang H, Gao J, Dong XY, Wang HJ, Li YM, Wang LM, Zhang J, Shu QY, Chao YC, Xu ML, Wang R, Wang LS, Zhang HC (2020). Systematic identification of the light-quality responding anthocyanin synthesis-related transcripts in Petunia petals. Hortic Plant J 6, 428-438. |
[10] | González-Villagra J, Kurepin LV, Reyes-Díaz MM (2017). Evaluating the involvement and interaction of abscisic acid and miRNA156 in the induction of anthocyanin biosynthesis in drought-stressed plants. Planta 246, 299-312. |
[11] | Grotewold E (2006). The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57, 761-780. |
[12] | Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M, Nakamura N, Yonekura-Sakakibara K, Togami J, Pigeaire A, Tao GQ, Nehra NS, Lu CY, Dyson BK, Tsuda S, Ashikari T, Kusumi T, Mason JG, Tanaka Y (2007). Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48, 1589-1600. |
[13] | Klie M, Debener T (2011). Identification of superior reference genes for data normalisation of expression studies via quantitative PCR in hybrid roses (Rosa hybrida). BMC Res Notes 4, 518. |
[14] | Koes R, Verweij W, Quattrocchio F (2005). Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10, 236-242. |
[15] | Li ZJ, Zhao MY, Jin JF, Zhao LY, Xu ZD (2018). Anthocyanins and their biosynthetic genes in three novel-colored Rosa rugosa cultivars and their parents. Plant Physiol Biochem 129, 421-428. |
[16] | Liu CC, Chi C, Jin LJ, Zhu JH, Yu JQ, Zhou YH (2018). The bZip transcription factor HY5 mediates CRY1a-induced anthocyanin biosynthesis in tomato. Plant Cell Environ 41, 1762-1775. |
[17] | Liu ZJ, Zhang YQ, Wang JF, Li P, Zhao CZ, Chen YD, Bi YR (2015). Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings. Plant Sci 238, 64-72. |
[18] | Llorente B, Martinez-Garcia JF, Stange C, Rodriguez- Concepcion M (2017). Illuminating colors: regulation of carotenoid biosynthesis and accumulation by light. Curr Opin Plant Biol 37, 49-55. |
[19] | Moehs CP, Tian L, Osteryoung KW, DellaPenna D (2001). Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Mol Biol 45, 281-293. |
[20] | Podolec R, Ulm R (2018). Photoreceptor-mediated regulation of the COP1/SPA E3 ubiquitin ligase. Curr Opin Plant Biol 45, 18-25. |
[21] | Provenzano S, Spelt C, Hosokawa S, Nakamura N, Brugliera F, Demelis L, Geerke DP, Schubert A, Tanaka Y, Quattrocchio F, Koes R (2014). Genetic control and evolution of anthocyanin methylation. Plant Physiol 165, 962-977. |
[22] | Sasaki N, Nakayama T (2015). Achievements and perspectives in biochemistry concerning anthocyanin modification for blue flower coloration. Plant Cell Physiol 56, 28-40. |
[23] | Sui X, Zhao MY, Han X, Zhao LY, Xu ZD (2019). RrGT1, a key gene associated with anthocyanin biosynthesis, was isolated from Rosa rugosa and identified via overexpression and VIGS. Plant Physiol Biochem 135, 19-29. |
[24] | Tanaka Y, Ohmiya A (2008). Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways. Curr Opin Biotechnol 19, 190-197. |
[25] | Tu ZH, Xia H, Yang LC, Zhai XY, Shen YF, Li HG (2022). The roles of microRNA-long non-coding RNA-mRNA networks in the regulation of leaf and flower development in Liriodendron chinense. Front Plant Sci 13, 816875. |
[26] | Watkins JL, Pogson BJ (2020). Prospects for carotenoid biofortification targeting retention and catabolism. Trends Plant Sci 25, 501-512. |
[27] | Xu WJ, Dubos C, Lepiniec L (2015). Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20, 176-185. |
[28] | Yamagishi M (2011). Oriental hybrid lily Sorbonne homo-logue of LhMYB12regulates anthocyanin biosyntheses in flower tepals and tepal spots. Mol Breed 28, 381-389. |
[29] | Zhang HC, Koes R, Shang HQ, Fu ZZ, Wang LM, Dong XY, Zhang J, Passeri V, Li YB, Jiang H, Gao J, Li YM, Wang HJ, Quattrocchio FM (2019). Identification and functional analysis of three new anthocyanin R2R3-MYB genes in Petunia. Plant Direct 3, e00114. |
[30] | Zimmermann IM, Heim MA, Weisshaar B, Uhrig JF (2004). Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J 40, 22-34. |
/
〈 | 〉 |