专题论坛

保卫细胞中ABA信号调控机制研究进展

展开
  • 广州大学生命科学学院, 广东省植物适应性与分子设计重点实验室, 广州 510006

收稿日期: 2022-01-07

  录用日期: 2022-05-12

  网络出版日期: 2022-05-12

基金资助

广州市科技计划(201707010288);广州大学国家级和省级大学生创新训练项目(202011078037);广州大学国家级和省级大学生创新训练项目(S202111078071)

Research Progress on the Regulatory Mechanisms of ABA Signal Transduction in Guard Cells

Expand
  • Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China

Received date: 2022-01-07

  Accepted date: 2022-05-12

  Online published: 2022-05-12

摘要

脱落酸(ABA)具有调节植物快速响应逆境的重要功能。植物细胞中ABA核心信号通路由ABA受体PYR1/PYLs/ RCARs、A类碱性蛋白磷酸酶PP2Cs和Snf1相关蛋白激酶SnRK2s组成。活性氧(ROS)和Ca2+是保卫细胞中的重要第二信使, 调控ABA诱导的气孔关闭。该文对保卫细胞中核心ABA信号蛋白的调控以及ROS和Ca2+介导的ABA信号转导等最新研究成果进行综述, 旨在阐明保卫细胞中ABA信号调控机制。

本文引用格式

周玉萍, 颜嘉豪, 田长恩 . 保卫细胞中ABA信号调控机制研究进展[J]. 植物学报, 2022 , 57(5) : 684 -696 . DOI: 10.11983/CBB22006

Abstract

ABA plays important roles in regulating the rapid responses of plants to stresses. The ABA core signal pathway consists of ABA receptors PYR1/PYLs/RCARs, clade A protein phosphatases PP2Cs and protein kinases SnRK2s in plant cells. Reactive oxygen species (ROS) and Ca2+ are the vital second messengers in guard cells that involved in the stomatal closure controlled by ABA. In this review, we focus on summarizing the latest research progresses on the regulations of core ABA signaling proteins in guard cells, ROS- and Ca2+-mediated guard cell ABA signal transductions, and attempt to elucidate the mechanisms of ABA signal transduction in guard cells.

参考文献

[1] 陈唯, 曾晓贤, 谢楚萍, 田长恩, 周玉萍 (2019). 植物内源ABA水平的动态调控机制. 植物学报 54, 677-687.
[2] 张静, 侯岁稳 (2019). 蛋白质翻译后修饰在ABA信号转导中的作用. 植物学报 54, 300-315.
[3] Acharya BR, Jeon BW, Zhang W, Assmann SM (2013). Open Stomata 1 (OST1) is limiting in abscisic acid responses of Arabidopsis guard cells. New Phytol 200, 1049-1063.
[4] Ali A, Kim JK, Jan M, Khan HA, Khan IU, Shen MZ, Park J, Lim CJ, Hussain S, Baek D, Wang K, Chung WS, Rubio V, Lee SY, Gong ZZ, Kim WY, Bressan RA, Pardo JM, Yun DJ (2019). Rheostatic control of ABA signaling through HOS15-mediated OST1 degradation. Mol Plant 12, 1447-1462.
[5] Antoni R, Gonzalez-Guzman M, Rodriguez L, Rodrigues A, Pizzio GA, Rodriguez PL (2012). Selective inhibition of clade A phosphatases type 2C by PYR/PYL/RCAR abscisic acid receptors. Plant Physiol 158, 970-980.
[6] Baek D, Kim MC, Kumar D, Park B, Cheong MS, Choi W, Park HC, Chun HJ, Park HJ, Lee SY, Bressan RA, Kim JY, Yun DJ (2019). AtPR5K2, a PR5-like receptor kinase, modulates plant responses to drought stress by phosphorylating protein phosphatase 2Cs. Front Plant Sci 10, 1146.
[7] Baek W, Lim CW, Lee SC (2018). A DEAD-box RNA helicase, RH8, is critical for regulation of ABA signaling and the drought stress response via inhibition of PP2CA activity. Plant Cell Environ 41, 1593-1604.
[8] Belin C, De Franco PO, Bourbousse C, Chaignepain S, Schmitter JM, Vavasseur A, Giraudat J, Barbier- Brygoo H, Thomine S (2006). Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiol 141, 1316-1327.
[9] Bhatnagar N, Kim R, Han S, Song J, Lee GS, Lee S, Min MK, Kim BG (2020). Ectopic expression of OsPYL/ RCAR7, an ABA receptor having low signaling activity, improves drought tolerance without growth defects in rice. Int J Mol Sci 21, 4163.
[10] Brandt B, Brodsky DE, Xue SW, Negi J, Iba K, Kangasj?rvi J, Ghassemian M, Stephan AB, Hu HH, Schroeder JI (2012). Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proc Natl Acad Sci USA 109, 10593-10598.
[11] Brandt B, Munemasa S, Wang C, Nguyen D, Yong TM, Yang PG, Poretsky E, Belknap TF, Waadt R, Alemán F, Schroeder JI (2015). Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells. eLife 4, e03599.
[12] Bueso E, Rodriguez L, Lorenzo-Orts L, Gonzalez-Guzman M, Sayas E, Mu?oz-Bertomeu J, Iba?ez C, Serrano R, Rodriguez PL (2014). The single-subunit RING- type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling. Plant J 80, 1057-1071.
[13] Chen DH, Liu HP, Li CL (2019). Calcium-dependent protein kinase CPK9 negatively functions in stomatal abscisic acid signaling by regulating ion channel activity in Arabidopsis. Plant Mol Biol 99, 113-122.
[14] Chen HH, Qu L, Xu ZH, Zhu JK, Xue HW (2018). EL1-like casein kinases suppress ABA signaling and responses by phosphorylating and destabilizing the ABA receptors PYR/ PYLs in Arabidopsis. Mol Plant 11, 706-719.
[15] Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y (2020a). Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol 62, 25-54.
[16] Chen QB, Bai L, Wang WJ, Shi HZ, Botella JR, Zhan QD, Liu K, Yang HQ, Song CP (2021). COP1 promotes ABA-induced stomatal closure by modulating the abundance of ABI/HAB and AHG3 phosphatases. New Phytol 229, 2035-2049.
[17] Chen SS, Jia HL, Wang XF, Shi C, Wang X, Ma PY, Wang J, Ren MJ, Li JS (2020b). Hydrogen sulfide positively regulates abscisic acid signaling through persulfidation of SnRK2.6 in guard cells. Mol Plant 13, 732-744.
[18] Cheong YH, Pandey GK, Grant JJ, Batistic O, Li LG, Kim BG, Lee SC, Kudla J, Luan S (2007). Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J 52, 223-239.
[19] Coego A, Julian J, Lozano-Juste J, Pizzio GA, Alrefaei AF, Rodriguez PL (2021). Ubiquitylation of ABA receptors and protein phosphatase 2C coreceptors to modulate ABA signaling and stress response. Int J Mol Sci 22, 7103.
[20] Corratgé-Faillie C, Ronzier E, Sanchez F, Prado K, Kim JH, Lanciano S, Leonhardt N, Lacombe B, Xiong TC (2017). The Arabidopsis guard cell outward potassium channel GORK is regulated by CPK33. FEBS Lett 591, 1982-1992.
[21] Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010). Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61, 651-679.
[22] Demir F, Horntrich C, Blachutzik JO, Scherzer S, Reinders Y, Kierszniowska S, Schulze WX, Harms GS, Hedrich R, Geiger D, Kreuzer I (2013). Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3. Proc Natl Acad Sci USA 110, 8296-8301.
[23] Diaz M, Sanchez-Barrena MJ, Gonzalez-Rubio JM, Rodriguez L, Fernandez D, Antoni R, Yunta C, Belda-Palazon B, Gonzalez-Guzman M, Peirats-Llobet M, Menendez M, Boskovic J, Marquez JA, Rodriguez PL, Albert A (2016). Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling. Proc Natl Acad Sci USA 113, E396-E405.
[24] Dittrich M, Mueller HM, Bauer H, Peirats-Llobet M, Rodriguez PL, Geilfus CM, Carpentier SC, Al Rasheid KAS, Kollist H, Merilo E, Herrmann J, Müller T, Ache P, Hetherington AM, Hedrich R (2019). The role of Arabidopsis ABA receptors from the PYR/PYL/RCAR family in stomatal acclimation and closure signal integration. Nat Plants 5, 1002-1011.
[25] Drerup MM, Schlücking K, Hashimoto K, Manishankar P, Steinhorst L, Kuchitsu K, Kudla J (2013). The Calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF. Mol Plant 6, 559-569.
[26] Franz S, Ehlert B, Liese A, Kurth J, Cazalé AC, Romeis T (2011). Calcium-dependent protein kinase CPK21 functions in abiotic stress response in Arabidopsis thaliana. Mol Plant 4, 83-96.
[27] Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Cutler SR, Sheen J, Rodriguez PL, Zhu JK (2009). In vitro reconstitution of an abscisic acid signaling pathway. Nature 462, 660-664.
[28] García-León M, Cuyas L, El-Moneim DA, Rodriguez L, Belda-Palazón B, Sanchez-Quant E, Fernández Y, Roux B, Zamarre?o áM, García-Mina JM, Nussaume L, Rodriguez PL, Paz-Ares J, Leonhardt N, Rubio V (2019). Arabidopsis ALIX regulates stomatal aperture and turnover of abscisic acid receptors. Plant Cell 31, 2411-2429.
[29] García-Mata C, Wang J, Gajdanowicz P, Gonzalez W, Hills A, Donald N, Riedelsberger J, Amtmann A, Dreyer I, Blatt MR (2010). A minimal cysteine motif required to activate the SKOR K+ channel of Arabidopsis by the reactive oxygen species H2O2. J Biol Chem 285, 29286-29294.
[30] Geiger D, Scherzer S, Mumm P, Marten I, Ache P, Matschi S, Liese A, Wellmann C, Al-Rasheid KAS, Grill E, Romeis T, Hedrich R (2010). Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc Natl Acad Sci USA 107, 8023-8028.
[31] Gonzalez-Guzman M, Pizzio GA, Antoni R, Vera-Sirera F, Merilo E, Bassel GW, Fernández MA, Holdsworth MJ, Perez-Amador MA, Kollist H, Rodriguez PL (2012). Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. Plant Cell 24, 2483-2496.
[32] Grondin A, Rodrigues O, Verdoucq L, Merlot S, Leonhardt N, Maurel C (2015). Aquaporins contribute to ABA- triggered stomatal closure through OST1-mediated phosphorylation. Plant Cell 27, 1945-1954.
[33] Gudesblat GE, Iusem ND, Morris PC (2007). Guard cell-specific inhibition of Arabidopsis MPK3 expression causes abnormal stomatal responses to abscisic acid and hydrogen peroxide. New Phytol 173, 713-721.
[34] Han JP, K?ster P, Drerup MM, Scholz M, Li SZ, Edel KH, Hashimoto K, Kuchitsu K, Hippler M, Kudla J (2019). Fine-tuning of RBOHF activity is achieved by differential phosphorylation and Ca2+binding. New Phytol 221, 1935-1949.
[35] Hao Q, Yin P, Li WQ, Wang L, Yan CY, Lin ZH, Wu JZ, Wang JW, Yan SF, Yan NE (2011). The molecular basis of ABA-independent inhibition of PP2Cs by a subclass of PYL proteins. Mol Cell 42, 662-672.
[36] Hou YJ, Zhu YF, Wang PC, Zhao Y, Xie SJ, Batelli G, Wang BSN, Duan CG, Wang XG, Xing L, Lei MG, Yan J, Zhu XH, Zhu JK (2016). Type one protein phosphatase 1 and its regulatory protein inhibitor 2 negatively regulate ABA signaling. PLoS Genet 12, e1005835.
[37] Hsu PK, Dubeaux G, Takahashi Y, Schroeder JI (2021). Signaling mechanisms in abscisic acid-mediated stomatal closure. Plant J 105, 307-321.
[38] Hua DP, Wang C, He JN, Liao H, Duan Y, Zhu ZQ, Guo Y, Chen ZZ, Gong ZZ (2012). A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell 24, 2546-2561.
[39] Irigoyen ML, Iniesto E, Rodriguez L, Puga MI, Yanagawa Y, Pick E, Strickland E, Paz-Ares J, Wei N, De Jaeger G, Rodriguez PL, Deng XW, Rubio V (2014). Targeted degradation of abscisic acid receptors is mediated by the ubiquitin ligase substrate adaptor DDA1 in Arabidopsis. Plant Cell 26, 712-728.
[40] Jammes F, Song C, Shin D, Munemasa S, Takeda K, Gu D, Cho D, Lee S, Giordo R, Sritubtim S, Leonhardt N, Ellis BE, Murata Y, Kwak JM (2009). MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci USA 106, 20520-20525.
[41] Jannat R, Uraji M, Morofuji M, Hossain MA, Islam MM, Nakamura Y, Mori IC, Murata Y (2011). The roles of CATALASE2 in abscisic acid signaling in Arabidopsis guard cells. Biosci Biotechnol Biochem 75, 2034-2036.
[42] Julian J, Coego A, Lozano-Juste J, Lechner E, Wu Q, Zhang X, Merilo E, Belda-Palazon B, Park SY, Cutler SR, An CC, Genschik P, Rodriguez PL (2019). The MATH-BTB BPM3 and BPM5 subunits of Cullin3-RING E3 ubiquitin ligases target PP2CA and other clade A PP2Cs for degradation. Proc Natl Acad Sci USA 116, 15725-15734.
[43] Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi YD, Cheong JJ (2008). Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol 146, 323-324.
[44] Kimura S, Kaya H, Kawarazaki T, Hiraoka G, Senzaki E, Michikawa M, Kuchitsu K (2012). Protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Arabidopsis NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca2+and reactive oxygen species. Biochim Biophys Acta Mol Cell Res 1823, 398-405.
[45] Kong LY, Cheng JK, Zhu YJ, Ding YL, Meng JJ, Chen ZZ, Xie Q, Guo Y, Li JG, Yang SH, Gong ZZ (2015). Degradation of the ABA co-receptor ABI1 by PUB12/ 13 U-box E3 ligases. Nat Commun 6, 8630.
[46] Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI (2003). NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22, 2623-2633.
[47] Li DK, Zhang L, Li XY, Kong XG, Wang XY, Li Y, Liu ZB, Wang JM, Li XF, Yang Y (2018). AtRAE1 is involved in degradation of ABA receptor RCAR1 and negatively regu- lates ABA signaling in Arabidopsis. Plant Cell Environ 41, 231-244.
[48] Li XY, Kong XG, Huang Q, Zhang Q, Ge H, Zhang L, Li GM, Peng L, Liu ZB, Wang JM, Li XF, Yang Y (2019). CARK1 phosphorylates subfamily III members of ABA receptors. J Exp Bot 70, 519-528.
[49] Li ZX, Li Z, Gao X, Chinnusamy V, Bressan R, Wang ZX, Zhu JK, Wu JW, Liu D (2012). ROP11 GTPase negatively regulates ABA signaling by protecting ABI1 phosphatase activity from inhibition by the ABA receptor RCAR1/PYL9 in Arabidopsis. J Integr Plant Biol 54, 180-188.
[50] Li ZX, Waadt R, Schroeder JI (2016). Release of GTP exchange factor mediated down-regulation of abscisic acid signal transduction through ABA-induced rapid degradation of RopGEFs. PLoS Biol 14, e1002461.
[51] Liu YC, Wu YR, Huang XH, Sun J, Xie Q (2011). AtPUB19, a U-box E3 ubiquitin ligase, negatively regulates abscisic acid and drought responses in Arabidopsis thaliana. Mol Plant 4, 938-946.
[52] Lu K, Zhang YD, Zhao CF, Zhou LH, Zhao QY, Chen T, Wang CL (2020). The Arabidopsis kinase-associated protein phosphatase KAPP, interacting with protein kinases SnRK2.2/2.3/2.6, negatively regulates abscisic acid signaling. Plant Mol Biol 102, 199-212.
[53] Lv TX, Li XM, Fan T, Luo HT, Xie CP, Zhou YP, Tian CE (2019). The calmodulin-binding protein IQM1 interacts with CATALASE2 to affect pathogen defense. Plant Physiol 181, 1314-1327.
[54] Ma SY, Wu WH (2007). AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Mol Biol 65, 511-518.
[55] Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064-1068.
[56] Maierhofer T, Diekmann M, Offenborn JN, Lind C, Bauer H, Hashimoto K, Al-Rasheid KAS, Luan S, Kudla J, Geiger D, Hedrich R (2014). Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid. Sci Signal 7, ra86.
[57] Mao HD, Jian C, Cheng XX, Chen B, Mei FM, Li FF, Zhang YF, Li SM, Du LY, Li T, Hao CY, Wang XJ, Zhang XY, Kang ZS (2022). The wheat ABA receptor gene TaPYL1- 1B contributes to drought tolerance and grain yield by increasing water-use efficiency. Plant Biotechnol J 20, 846-861.
[58] Mega R, Abe F, Kim JS, Tsuboi Y, Tanaka K, Kobayashi H, Sakata Y, Hanada K, Tsujimoto H, Kikuchi J, Cutler SR, Okamoto M (2019). Tuning water-use efficiency and drought tolerance in wheat using abscisic acid receptors. Nat Plants 5, 153-159.
[59] Meinhard M, Grill E (2001). Hydrogen peroxide is a regulator of ABI1, a protein phosphatase 2C from Arabidopsis. FEBS Lett 508, 443-446.
[60] Meinhard M, Rodriguez PL, Grill E (2002). The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signaling. Planta 214, 775-782.
[61] Miao YC, Lv D, Wang PC, Wang XC, Chen J, Miao C, Song CP (2006). An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18, 2749-2766.
[62] Mori IC, Murata Y, Yang YZ, Munemasa S, Wang YF, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR, Kwak JM, Schroeder JI (2006). CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channels and stomatal closure. PLoS Biol 4, e327.
[63] Munemasa S, Hauser F, Park J, Waadt R, Brandt B, Schroeder JI (2015). Mechanisms of abscisic acid-media ted control of stomatal aperture. Curr Opin Plant Biol 28, 154-162.
[64] Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002). Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14, 3089-3099.
[65] Nagpal A, Hassan A, Ndamukong I, Avramova Z, Balu?ka F (2018). Myotubularins, PtdIns5P, and ROS in ABA- mediated stomatal movements in dehydrated Arabidopsis seedlings. Funct Plant Biol 45, 259-266.
[66] Nguyen NH, Cheong JJ (2018). AtMYB44 interacts with TOPLESS-RELATED corepressors to suppress protein phosphatase 2C gene transcription. Biochem Biophys Res Commun 507, 437-442.
[67] Nishimura N, Sarkeshik A, Nito K, Park SY, Wang AGL, Carvalho PC, Lee S, Caddell DF, Cutler SR, Chory J, Yates JR, Schroeder JI (2010). PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C- interacting proteins in Arabidopsis. Plant J 61, 290-299.
[68] Ogasawara Y, Kaya H, Hiraoka G, Yumoto F, Kimura S, Kadota Y, Hishinuma H, Senzaki E, Yamagoe S, Nagata K, Nara M, Suzuki K, Tanokura M, Kuchitsu K (2008). Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J Biol Chem 283, 8885-8892.
[69] Papacek M, Christmann A, Grill E (2019). Increased water use efficiency and water productivity of Arabidopsis by abscisic acid receptors from Populus canescens. Ann Bot 124, 581-589.
[70] Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TFF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068-1071.
[71] Qi JS, Song CP, Wang BS, Zhou JM, Kangasj?rvi J, Zhu JK, Gong ZZ (2018). Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. J Integr Plant Biol 60, 805-826.
[72] Rodrigues O, Reshetnyak G, Grondin A, Saijo Y, Leonhardt N, Maurel C, Verdoucq L (2017). Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA-and pathogen-triggered stomatal closure. Proc Natl Acad Sci USA 114, 9200-9205.
[73] Rodriguez L, Gonzalez-Guzman M, Diaz M, Rodrigues A, Izquierdo-Garcia AC, Peirats-Llobet M, Fernandez MA, Antoni R, Fernandez D, Marquez JA, Mulet JM, Albert A, Rodriguez PL (2014). C2-domain abscisic acid-related proteins mediate the interaction of PYR/PYL/RCAR abscisic acid receptors with the plasma membrane and regulate abscisic acid sensitivity in Arabidopsis. Plant Cell 26, 4802-4820.
[74] Rubio S, Rodrigues A, Saez A, Dizon MB, Galle A, Kim TH, Santiago J, Flexas J, Schroeder JI, Rodriguez PL (2009). Triple loss of function of protein phosphatases type 2C leads to partial constitutive response to endogenous abscisic acid. Plant Physiol 150, 1345-1355.
[75] Seo DH, Ryu MY, Jammes F, Hwang JH, Turek M, Kang BG, Kwak JM, Kim WT (2012). Roles of four Arabidopsis U-box E3 ubiquitin ligases in negative regulation of abscisic acid-mediated drought stress responses. Plant Physiol 160, 556-568.
[76] Shang Y, Dai CB, Lee MM, Kwak JM, Nam KH (2016). BRI1-associated receptor kinase 1 regulates guard cell ABA signaling mediated by open stomata 1 in Arabidopsis. Mol Plant 9, 447-460.
[77] Shang Y, Yang DM, Ha YM, Shin HY, Nam KH (2020). Receptor-like protein kinases RPK1 and BAK1 sequentially form complexes with the cytoplasmic kinase OST1 to regulate ABA-induced stomatal closure. J Exp Bot 71, 1491-1502.
[78] Sierla M, H?rak H, Overmyer K, Waszczak C, Yarmolinsky D, Maierhofer T, Vainonen JP, Saloj?rvi J, Denessiouk K, Laanemets K, T?ldsepp K, Vahisalu T, Gauthier A, Puukko T, Paulin L, Auvinen P, Geiger D, Hedrich R, Kollist H, Kangasj?rvi J (2018). The receptor-like pseudokinase GHR1 is required for stomatal closure. Plant Cell 30, 2813-2837.
[79] Sirichandra C, Gu D, Hu HC, Davanture M, Lee S, Djaoui M, Valot B, Zivy M, Leung J, Merlot S, Kwak JM (2009). Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett 583, 2982-2986.
[80] Song SJ, Feng QN, Li CL, Li E, Liu Q, Kang H, Zhang W, Zhang Y, Li S (2018). A tonoplast-associated calcium- signaling module dampens ABA signaling during stomatal movement. Plant Physiol 177, 1666-1678.
[81] Soon FF, Ng LM, Zhou XE, West GM, Kovach A, Tan MHE, Suino-Powell KM, He YZ, Xu Y, Chalmers MJ, Brunzelle JS, Zhang HM, Yang HY, Jiang HL, Li J, Yong EL, Cutler S, Zhu JK, Griffin PR, Melcher K, Xu HE (2012). Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science 335, 85-88.
[82] Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011). Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14, 691-699.
[83] Takahashi Y, Zhang JB, Hsu PK, Ceciliato PHO, Zhang L, Dubeaux G, Munemasa S, Ge CN, Zhao YD, Hauser F, Schroeder JI (2020). MAP3Kinase-dependent SnRK2- kinase activation is required for abscisic acid signal transduction and rapid osmotic stress response. Nat Commun 11, 12.
[84] Tarnowski K, Klimecka M, Ciesielski A, Goch G, Kulik A, Fedak H, Poznański J, Lichocka M, Pierechod M, Engh RA, Dadlez M, Dobrowolska G, Bucholc M (2020). Two SnRK2-interacting calcium sensor isoforms negatively regulate SnRK2 activity by different mechanisms. Plant Physiol 182, 1142-1160.
[85] Tian S, Wang XB, Li P, Wang H, Ji HT, Xie JY, Qiu QL, Shen D, Dong HS (2016). Plant aquaporin AtPIP1;4 links apoplastic H2O2 induction to disease immunity pathways. Plant Physiol 171, 1635-1650.
[86] Tian XJ, Wang ZY, Li XF, Lv TX, Liu HZ, Wang LZ, Niu HB, Bu QY (2015). Characterization and functional analysis of pyrabactin resistance-like abscisic acid receptor family in rice. Rice 8, 28.
[87] Tischer SV, Wunschel C, Papacek M, Kleigrewe K, Hofmann T, Christmann A, Grill E (2017). Combinatorial interaction network of abscisic acid receptors and coreceptors from Arabidopsis thaliana. Proc Natl Acad Sci USA 114, 10280-10285.
[88] Ueoka-Nakanishi H, Sazuka T, Nakanishi Y, Maeshima M, Mori H, Hisabori T (2013). Thioredoxin h regulates calcium dependent protein kinases in plasma membranes. FEBS J 280, 3220-3231.
[89] Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K (2009). Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci USA 106, 17588-17593.
[90] Wang K, He JN, Zhao Y, Wu T, Zhou XF, Ding YL, Kong LY, Wang XJ, Wang Y, Li J, Song CP, Wang BS, Yang SH, Zhu JK, Gong ZZ (2018a). EAR1 negatively regulates ABA signaling by enhancing 2C protein phosphatase activity. Plant Cell 30, 815-834.
[91] Wang PC, Du YY, Hou YJ, Zhao Y, Hsu CC, Yuan FJ, Zhu XH, Tao WA, Song CP, Zhu JK (2015). Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc Natl Acad Sci USA 112, 613-618.
[92] Wang PC, Zhao Y, Li ZP, Hsu CC, Liu X, Fu LW, Hou YJ, Du YY, Xie SJ, Zhang CG, Gao JH, Cao MJ, Huang XS, Zhu YF, Tang K, Wang XG, Tao WA, Xiong Y, Zhu JK (2018b). Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol Cell 69, 100-112.
[93] Wang XJ, Guo C, Peng J, Li C, Wan FF, Zhang SM, Zhou YY, Yan Y, Qi LJ, Sun KW, Yang SH, Gong ZZ, Li JG (2019). ABRE-BINDING FACTORS play a role in the feedback regulation of ABA signaling by mediating rapid ABA induction of ABA co-receptor genes. New Phytol 221, 341-355.
[94] Wu Q, Zhang X, Peirats-Llobet M, Belda-Palazon B, Wang XF, Cui S, Yu XC, Rodriguez PL, An CC (2016). Ubiquitin ligases RGLG1 and RGLG5 regulate abscisic acid signaling by controlling the turnover of phosphatase PP2CA. Plant Cell 28, 2178-2196.
[95] Xue TT, Wang D, Zhang SZ, Ehlting J, Ni F, Jakab S, Zheng CC, Zhong Y (2008). Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis. BMC Genomics 9, 550.
[96] Yang ZY, Liu JH, Poree F, Schaeufele R, Helmke H, Frackenpohl J, Lehr S, Von Koskull-D?ring P, Christmann A, Schnyder H, Schmidhalter U, Grill E (2019). Abscisic acid receptors and coreceptors modulate plant water use efficiency and water productivity. Plant Physiol 180, 1066-1080.
[97] Yu F, Qian LC, Nibau C, Duan QH, Kita D, Levasseur K, Li XQ, Lu CQ, Li H, Hou CC, Li LG, Buchanan BB, Chen LB, Cheung AY, Li DP, Luan S (2012). FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase. Proc Natl Acad Sci USA 109, 14693-14698.
[98] Yu JL, Ge HM, Wang XK, Tang RJ, Wang Y, Zhao FG, Lan WZ, Luan S, Yang L (2017). Overexpression of pyrabactin resistance-like abscisic acid receptors enhances drought, osmotic, and cold tolerance in transgenic poplars. Front Plant Sci 8, 1752.
[99] Yu ZP, Zhang D, Xu Y, Jin SS, Zhang L, Zhang SZ, Yang GD, Huang JG, Yan K, Wu CG, Zheng CC (2019). CEPR2 phosphorylates and accelerates the degradation of PYR/PYLs in Arabidopsis. J Exp Bot 70, 5457-5469.
[100] Zhang L, Li XY, Li DK, Sun YN, Li Y, Luo Q, Liu ZB, Wang JM, Li XF, Zhang H, Lou ZY, Yang Y (2018). CARK1 mediates ABA signaling by phosphorylation of ABA receptors. Cell Discov 4, 30.
[101] Zhang WH, Qin CB, Zhao J, Wang XM (2004). Phospholipase Dα1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci USA 101, 9508-9513.
[102] Zhang YY, Zhu HY, Zhang Q, Li MY, Yan M, Wang R, Wang LL, Welti R, Zhang WH, Wang XM (2009). Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell 21, 2357-2377.
[103] Zhao Y, Zhang ZJ, Gao JH, Wang PC, Hu T, Wang ZG, Hou YJ, Wan YZ, Liu WS, Xie SJ, Lu TJ, Xue L, Liu YJ, Macho AP, Tao WA, Bressan RA, Zhu JK (2018). Arabidopsis duodecuple mutant of PYL ABA receptors reveals PYL repression of ABA-independent SnRK2 activity. Cell Rep 23, 3340-3351.
[104] Zhou YP, Duan J, Fujibe T, Yamamoto KT, Tian CE (2012). AtIQM1, a novel calmodulin-binding protein, is involved in stomatal movement in Arabidopsis. Plant Mol Biol 79, 333-346.
[105] Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, Shang Y, Du SY, Wang XF, Wu FQ, Xu YH, Zhang XY, Zhang DP (2007). Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19, 3019-3036.
[106] Zou JJ, Li XD, Ratnasekera D, Wang C, Liu WX, Song LF, Zhang WZ, Wu WH (2015). Arabidopsis CALCIUM- DEPENDENT PROTEIN KINASE 8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. Plant Cell 27, 1445-1460.
[107] Zou JJ, Wei FJ, Wang C, Wu JJ, Ratnasekera D, Liu WX, Wu WH (2010). Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+- media- ted stomatal regulation in response to drought stress. Plant Physiol 154, 1232-1243.
文章导航

/