收稿日期: 2022-02-10
录用日期: 2022-05-10
网络出版日期: 2022-05-10
基金资助
国家自然科学基金(31601782)
Analysis of Chloroplast Genomes of Aleurites moluccana
Received date: 2022-02-10
Accepted date: 2022-05-10
Online published: 2022-05-10
石栗(Aleurites moluccana)是大戟科石栗属的常绿阔叶乔木, 具有能源、药用和观赏价值。为填补石栗叶绿体基因组研究的空白, 通过二代高通量全基因组测序, 组装和注释了石栗叶绿体基因组, 并进行基因组特征和系统发育分析。结果显示, 石栗叶绿体基因组为典型的四段式结构, 总长度为163 298 bp, LSC、SSC及IR的长度分别为91 301、18 501和26 748 bp。石栗叶绿体基因组共有131个基因, 包括8个rRNA基因, 37个tRNA基因, 86个蛋白质编码基因。研究发现145个SSR位点, 检测到重复单元有单核苷酸、二核苷酸、三核苷酸和四核苷酸, 数目分别为80、53、10和2个。共线性分析结果表明, 石栗叶绿体基因组存在基因倒位和重排现象。利用最大似然法和贝叶斯法构建了系统发育树, 显示石栗与油桐(Vernicia fordii)和东京桐(Deutzianthus tonkinensis)亲缘关系较近, 并形成姐妹群。利用化石时间进行定年分析, 表明石栗属、油桐属和东京桐属的分化时间为25.94 Ma (95% HPD: 24.71-63.32 Ma)。该研究丰富了石栗基因组信息, 可为石栗种质资源的开发利用提供基础遗传数据, 同时为石栗属物种鉴定及系统发育研究提供参考。
包金波, 丁志杰, 苗浩宇, 李雪丽, 任书贤, 焦若岩, 李浩, 邓茜茜, 李英姿, 田新民 . 石栗叶绿体基因组研究[J]. 植物学报, 2023 , 58(2) : 248 -260 . DOI: 10.11983/CBB22026
Aleurites moluccana is an evergreen broad-leaved tree of the genus Aleurites in the family Euphorbiaceae, with energy, medicinal and ornamental values. To fill the gap in study of the chloroplast genome of A. moluccana, we assembled and annotated the chloroplast genome of A. moluccana by next-generation high-throughput whole genome sequencing, and performed genomic characterization and phylogenetic analysis. The results showed that the chloroplast genome of A. moluccana exhibited typical quadripartite and circular structures with a total length of 163 298 bp, the length of LSC, SSC, and IR was 91 301, 18 501, and 26 748 bp, respectively. It contains 131 genes, including 8 rRNA genes, 37 tRNA genes and 86 protein coding genes. A total of 145 SSR loci were found, with mononucleotide, dinucleotide, trinucleotide and tetranucleotide repeat units, and the numbers detected were 80, 53, 10, and 2, respectively. The results of collinearity analysis showed that the chloroplast genome of A. moluccana has the phenomenon of gene inversion and rearrangement. Phylogenetic trees were constructed using the maximum likelihood and Bayesian methods. It was found that A. moluccana was closely related to Vernicia fordii and Deutzianthus tonkinensis, and formed a sister group. The results of the dating analysis using fossil time showed that the differentiation time of the Aleurites, Vernicia and Deutzianthus was 25.94 Ma (95% HPD: 24.71-63.32 Ma). This study enriched the genomic information of A. moluccana and provided basic genetic data for the development and utilization of A. moluccana germplasm resources, as well as a reference for species identification and phylogenetic study of the Aleurites.
Key words: Aleurites moluccana; chloroplast genome; phylogeny
[1] | 蔡金标, 丁建祖, 陈必勇 (1997). 中国油桐品种、类型的分类. 经济林研究 15(4), 47-50. |
[2] | 曹晖, 肖艳华, 王绍云 (2007). 石栗属和油桐属的化学成分和生物活性. 凯里学院学报 25(006), 43-45. |
[3] | 陈琴怡 (2017). 两种五加科植物的叶绿体全基因组研究及其系统发育分析. 硕士论文. 杭州: 浙江大学. pp. 22-34. |
[4] | 李巧丽, 延娜, 宋琼, 郭军战 (2018). 鲁桑叶绿体基因组序列及特征分析. 植物学报 53, 94-103. |
[5] | 梁文汇, 李开祥, 邓力, 曾祥艳, 邓福春 (2011). 广西生物柴油原料树种石栗的综合评价. 广西林业科学 40, 333-335. |
[6] | 凌建群, 张新英, 陈耀堂 (1995). 油桐、千年桐和石栗的木材比较解剖. 北京大学学报(自然科学版) 31, 745-751. |
[7] | 刘昌盛, 黄凤洪, 李重屹, 王明霞, 南占东, 韩伟, 廖李 (2008). 木本油料石栗的初步研究. 中国油料作物学报 30, 106-107, 111. |
[8] | 罗群凤, 冯源恒, 贾婕, 陈虎, 杨章旗 (2018). 马尾松叶绿体基因组测序及特征分析. 广西林业科学 47, 7. |
[9] | 苏梦云, 周国璋 (1988). 油桐属与石栗属叶绿体的核酸、蛋白质及超微结构的初步研究. 林业科学研究 1, 424-427. |
[10] | 孙雨晴 (2018). 四种葱蒜类蔬菜叶绿体DNA提取优化及比较基因组学研究. 硕士论文. 长春: 吉林农业大学. pp. 36-38. |
[11] | 王劲风, 方嘉兴, 刘兴温, 周国璋, 苏梦云, 成小飞 (1986). 油桐属种分类及其品种类型鉴别方法的探讨. 全国林木遗传育种第五次学术报告会论文汇编. pp. 119-121. |
[12] | 王磊 (2013). 石栗种子内含物变化及accD基因的克隆研究. 硕士论文. 南宁: 广西大学. pp. 45-68. |
[13] | 谢海坤, 焦健, 樊秀彩, 张颖, 姜建福, 孙海生, 刘崇怀 (2017). 基于高通量测序组装赤霞珠叶绿体基因组及其特征分析. 中国农业科学 50, 1655-1665. |
[14] | 杨亚蒙, 焦健, 樊秀彩, 张颖, 姜建福, 李民, 刘崇怀 (2019). 桑叶葡萄叶绿体基因组及其特征分析. 园艺学报 46, 635-648. |
[15] | 杨艳婷 (2018). 羊草叶绿体全基因组分析及分子标记开发. 硕士论文. 扬州: 扬州大学. pp. 55-65. |
[16] | 赵月梅, 杨振艳, 赵永平, 李筱玲, 赵志新, 赵桂仿 (2019). 木犀科植物叶绿体基因组结构特征和系统发育关系. 植物学报 54, 441-454. |
[17] | 周会, 荆胜利, 李刚, 张磊, 覃瑞, 刘虹 (2014). 叶绿体基因组分析在植物系统发育中的应用. 植物学研究 3, 1-9. |
[18] | Cesca TG, Faqueti LG, Rocha LW, Meira NA, Meyre-Silva C, De Souza MM, Quint?o NLM, Silva RML, Filho VC, Bresolin TMB (2012). Antinociceptive, anti-inflammatory and wound healing features in animal models treated with a semisolid herbal medicine based on Aleurites moluccana L. Willd. Euforbiaceae standardized leaf extract: semisolid herbal. J Ethnopharmacol 143, 355-362. |
[19] | Daniell H, Lin CS, Yu M, Chang WJ (2016). Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 17, 134. |
[20] | Fukuda Y, Tomita M, Washio T (1999). Comparative study of overlapping genes in the genomes of Mycoplasma gen- italium and Mycoplasma pneumoniae. Nucleic Acids Res 27, 1847-1853. |
[21] | Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, Yi TS, Li DZ (2020). GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol 21, 241. |
[22] | Krause K (2008). From chloroplasts to “cryptic” plastids: evolution of plastid genomes in parasitic plants. Curr Genet 54, 111-121. |
[23] | Li PR, Zhang SJ, Li F, Zhang SF, Zhang H, Wang XW, Sun RF, Bonnema G, Borm TJA (2017a). A phylogenetic analysis of chloroplast genomes elucidates the relationships of the six economically important Brassica species comprising the triangle of U. Front Plant Sci 8, 111. |
[24] | Li Z, Long HX, Zhang L, Liu ZM, Cao HP, Shi MW, Tan XF (2017b). The complete chloroplast genome sequence of tung tree (Vernicia fordii): organization and phylogenetic relationships with other angiosperms. Sci Rep 7, 1869. |
[25] | Liu L, Hao ZZ, Liu YY, Wei XX, Cun YZ, Wang XQ (2014). Phylogeography of Pinus armandii and its relatives: heterogeneous contributions of geography and climate changes to the genetic differentiation and diversification of Chinese white pines. PLoS One 9, e85920. |
[26] | Martin G, Baurens FC, Cardi C, Aury JM, D’Hont A (2013). The complete chloroplast genome of banana (Musa acuminata, Zingiberales): insight into plastid monocotyledon evolution. PLoS One 8, e67350. |
[27] | Nie XJ, Lv SZ, Zhang YX, Du XH, Wang L, Biradar SS, Tan XF, Wan FH, Song WN (2012). Complete chloroplast genome sequence of a major invasive species, crofton weed (Ageratina adenophora). PLoS One 7, e36869. |
[28] | Niu YF, Hu YS, Zheng C, Liu ZY, Liu J (2020). The complete chloroplast genome of Hevea camargoana. Mitochondrial DNA Part B 5, 607-608. |
[29] | Quint?o NLM, Pastor MVD, de-Souza Antonialli C, da Silva GF, Rocha LW, Berté TE, de Souza MM, Meyre- Silva C, Lucinda-Silva RM, Bresolin TMB, Filho VC (2019). Aleurites moluccanus and its main active constituent, the flavonoid 2″-O-rhamnosylswertisin, in experimental model of rheumatoid arthritis. J Ethnopharmacol 235, 248-254. |
[30] | Radunz A, He P, Schmid GH (1998). Analysis of the seed lipids of Aleurites montana. Z Naturforsch C 53, 305-310. |
[31] | Reback RG, Kapgate DK, Wurdack K, Manchester SR (2022). Fruits of euphorbiaceae from the late cretaceous Deccan intertrappean beds of India. Int J Plant Sci 183, 128-138. |
[32] | Shaw J, Lickey EB, Schilling EE, Small RL (2007). Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94, 275-288. |
[33] | Song Y, Dong WP, Liu B, Xu C, Yao X, Gao J, Corlett RT (2015). Comparative analysis of complete chloroplast genome sequences of two tropical trees Machilus yunnanensis and Machilus balansae in the family Lauraceae. Front Plant Sci 6, 662. |
[34] | Villarante NR, Davila RAE, Sumalapao DEP (2018). Removal of lead (ΙΙ) by Lumbang, Aleurites moluccana activated carbon carboxymethylcellulose composite crosslinked with epichlorohydrin. Orient J Chem 34, 693-703. |
[35] | Villarante NR, Ibarrientos CH (2021). Physicochemical characterization of candlenut (Aleurites moluccana)-derived biodiesel purified with deed eutectic solvents. J Oleo Sci 70, 113-123. |
[36] | Wang YL, Jian X, Wang S (2022). Characterization of the complete chloroplast genome of Rupr. (Euphorbiaceae). Mitochondrial DNA Part B 7, 1550-1552. |
[37] | Zhang QY, Chen X, Guo MB, Guo R, Xu YP, Yang M, Guo HY (2017). Screening and development of chloroplast polymorphic molecular markers on wild hemp (Cannabis sativa L.). Mol Plant Breed 15, 979-985. |
/
〈 | 〉 |