研究报告

水稻黄绿叶调控基因YGL18的克隆与功能解析

展开
  • 1浙江师范大学化学与生命科学学院, 金华 321004
    2中国水稻研究所水稻生物学国家重点实验室, 杭州 310006

收稿日期: 2022-01-19

  录用日期: 2022-03-18

  网络出版日期: 2022-03-18

基金资助

国家级大学生创新创业训练计划(202010345067);国家级大学生创新创业训练计划(202110345011);国家自然科学基金(31971921);广西水稻遗传育种重点实验室开放基金(2018-15-Z06-KF12);中国水稻生物学国家重点实验室开放项目(20200102)

Cloning and Functional Analysis of Rice Yellow Green Leaf Regulatory Gene YGL18

Expand
  • 1College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
    2State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China

Received date: 2022-01-19

  Accepted date: 2022-03-18

  Online published: 2022-03-18

摘要

叶色突变体往往伴随着叶绿素含量变化及叶绿体结构异常, 是研究叶绿体发育与光合作用相关基因功能的重要材料。该研究通过甲基磺酸乙酯(EMS)诱变籼稻(Oryza sativa subsp. indica)品种华占(HZ)获得黄绿叶突变体, 将其命名为ygl18 (yellow-green leaf 18)。与野生型相比, 黄绿叶突变体ygl18自三叶期起叶片开始变黄且程度不断加深, 同时伴随着光合速率与叶绿素含量下降, 且结实率、千粒重及有效穗数均显著降低。透射电镜观察结果显示, ygl18的叶绿体结构紊乱, 基质片层疏松, 发育受到抑制, 与叶片出现黄绿色表型一致。遗传分析表明, ygl18突变性状受1对隐性等位核基因控制, 这对等位基因位于水稻第3号染色体长臂标记InDel2和InDel3之间115.2 kb范围内。进一步研究发现该突变体表型是编码铁氧还蛋白FdC2的基因LOC_Os03g48040的5'UTR发生突变所致。通过CRISPR转基因实验验证了该基因对表型的控制作用。研究结果揭示了叶色调控网络的遗传基础, 可为今后选育高光效水稻品种提供新线索。

本文引用格式

杨凯如, 贾绮玮, 金佳怡, 叶涵斐, 王盛, 陈芊羽, 管易安, 潘晨阳, 辛德东, 方媛, 王跃星, 饶玉春 . 水稻黄绿叶调控基因YGL18的克隆与功能解析[J]. 植物学报, 2022 , 57(3) : 276 -287 . DOI: 10.11983/CBB22018

Abstract

Leaf color mutants are often accompanied by changes in chlorophyll content and abnormal chloroplast structure, and serve as essential materials for studying the functions of chloroplast development and photosynthesis-related genes. In this study, we obtained a yellow-green leaf mutant named yellow-green leaf 18 (ygl18) from Oryza sativa subsp. indica cv. ‘HZ’ with ethyl methanesulfonate (EMS). Compared with the wild type, the leaves of ygl18 turned yellow at three-leaf stage and the degree of yellowing increased as it grew, accompanied by decreasing photosynthetic rate and chlorophyll content. The seed-setting rate, 1 000-grain weight, and effective panicle number were significantly lower than those of the wild type. We observed disordered chloroplast structure, loose stromal lamellas, and stalled development in the mutant using transmission electron microscopy. Genetic analysis indicated that the mutant feature (or phenotype) of ygl18 is controlled by a pair of recessive nuclear alleles, which were located in a 115.2 kb region between markers InDel2 and InDel3 on the long arm of chromosome 3. We found mutations in the 5′UTR of LOC_Os03g48040 encoding FdC2 (ferredoxin C2). The gene’s function on controlling the mutant phenotype was verified using CRISPR transgenic experiments. Our results revealed a genetic basis for leaf color regulatory network and provide new clues for breeding photosynthetically efficient rice varieties in the future.

参考文献

[1] 陈昆松, 李方, 徐昌杰, 张上隆, 傅承新 (2004). 改良CTAB法用于多年生植物组织基因组DNA的大量提取. 遗传 26, 529-531.
[2] 杜芳芳, 马骏杰, 杨泽伟, 赵雪莲, 刘东宇, 杨秀芹 (2021). 5'UTR在基因表达调控中的研究进展. 中国畜牧杂志 57(8), 60-67.
[3] 赫磊 (2020). 铁氧还蛋白调控水稻光合电子传递的分子机理研究. 博士论文. 北京: 中国农业科学院. pp. 1-101.
[4] 林添资, 孙立亭, 景德道, 钱华飞, 余波, 曾生元, 李闯, 龚红兵 (2018). 一个水稻黄绿叶突变体ygl14(t)的鉴定及基因定位. 核农学报 32, 216-226.
[5] 任永梅, 王嘉宇, 王琬璐, 王棋, 姜鑫, 刘振宇, 朱琳 (2019). 水稻白条纹叶突变体wsl1的生理特性分析及基因定位. 沈阳农业大学学报 50, 87-92.
[6] 韦敏益, 吴子帅, 刘立龙, 李允振, 农春晓, 覃宝祥, 李容柏 (2016). 一个水稻长芒基因AWN-2的定位与克隆. 基因组学与应用生物学 35, 949-956.
[7] 徐娜, 徐江民, 蒋玲欢, 饶玉春 (2017). 水稻叶片早衰成因及分子机理研究进展. 植物学报 52, 102-112.
[8] 许子怡, 程行, 沈奇, 赵亚男, 汤佳玉, 刘喜 (2021). 水稻黄绿叶突变体ygl3的鉴定与基因功能分析. 中国农业科学 54, 3149-3157.
[9] 杨颜榕, 黄纤纤, 赵亚男, 汤佳玉, 刘喜 (2020). 水稻叶色基因克隆与分子机制研究进展. 植物遗传资源学报 21, 794- 803.
[10] 张芳燕, 罗翔, 董娜, 张鹏 (2011). 5'UTR与基因表达的关系. 科技经济市场 (3), 13-16.
[11] 张力科, 高用明 (2009). 水稻叶色突变体及其基因定位和克隆的研究进展. 作物杂志 (2), 12-16.
[12] 周纯, 焦然, 胡萍, 林晗, 胡娟, 徐娜, 吴先美, 饶玉春, 王跃星 (2019). 水稻早衰突变体LS-es1的基因定位及候选基因分析. 植物学报 54, 606-619.
[13] 周亭亭, 饶玉春, 任德勇 (2018). 水稻卷叶细胞学与分子机制研究进展. 植物学报 53, 848-855.
[14] Akhter D (2019). 水稻叶色基因OsBMLOsPL的基因定位和功能分析. 博士论文. 杭州: 浙江大学. pp. 52-54.
[15] Chiu FY, Chen YR, Tu SL (2010). Electrostatic interaction of phytochromobilin synthase and ferredoxin for biosynthesis of phytochrome chromophore. J Biol Chem 285, 5056-5065.
[16] Dong H, Fei GL, Wu CY, Wu FQ, Sun YY, Chen MJ, Ren YL, Zhou KN, Cheng ZJ, Wang JL, Jiang L, Zhang X, Guo XP, Lei CL, Su N, Wang HY, Wan JM (2013). A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiol 162, 1867-1880.
[17] Gou P, Hanke GT, Kimata-Ariga Y, Standley DM, Kubo A, Taniguchi I, Nakamura H, Hase T (2006). Higher order structure contributes to specific differences in redox potential and electron transfer efficiency of root and leaf ferredoxins. Biochemistry 45, 14389-14396.
[18] Jung KH, Hur J, Ryu CH, Choi Y, Chung YY, Miyao A, Hirochika H, An G (2003). Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol 44, 463-472.
[19] Li CM, Hu Y, Huang R, Ma XZ, Wang Y, Liao TT, Zhong P, Xiao FL, Sun CH, Xu ZJ, Deng XJ, Wang PR (2015). Mutation of FdC2 gene encoding a ferredoxin-like protein with C-terminal extension causes yellow-green leaf phenotype in rice. Plant Sci 238, 127-134.
[20] Lichtenthaler HK (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148, 350-382.
[21] Parks BM, Quail PH (1991). Phytochrome-deficient hy1 and hy2 long hypocotyl mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis. Plant Cell 3, 1177-1186.
[22] Wang PY, Li CM, Wang Y, Huang R, Sun CH, Xu ZJ, Zhu JQ, Gao XL, Deng XJ, Wang PR (2014). Identification of a geranylgeranyl reductase gene for chlorophyll synthesis in rice. Springerplus 3, 201.
[23] Wu ZM, Zhang X, He B, Diao LP, Sheng SL, Wang JL, Guo XP, Su N, Wang LF, Jiang L, Wang CM, Zhai HQ, Wan JM (2007). A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol 145, 29-40.
[24] Yoo SC, Cho SH, Sugimoto H, Li JJ, Kusumi K, Koh HJ, Iba K, Paek NC (2009). Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol 150, 388-401.
[25] Zeng DC, Liu TL, Ma XL, Wang B, Zheng ZY, Zhang YL, Xie XR, Yang BW, Zhao Z, Zhu QL, Liu YG (2020a). Quantitative regulation of Waxy expression by CRISPR/ Cas9-based promoter and 5'UTR-intron editing improves grain quality in rice. Plant Biotechnol J 18, 2385-2387.
[26] Zeng ZQ, Lin TZ, Zhao JY, Zheng TH, Xu LF, Wang YH, Liu LL, Jiang L, Chen SH, Wan JM (2020b). OsHemA gene, encoding glutamyl-tRNA reductase (GluTR) is essential for chlorophyll biosynthesis in rice (Oryza sativa). J Integr Agricul 19, 612-623.
[27] Zhang HT, Li JJ, Yoo JH, Yoo SC, Cho SH, Koh HJ, Seo HS, Paek NC (2006). Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol 62, 325-337.
[28] Zhao J, Qiu ZN, Ruan BP, Kang SJ, Lei H, Zhang S, Dong GJ, Jiang H, Zeng DL, Zhang GH, Gao ZY, Ren DY, Hu XM, Chen G, Guo LB, Qian Q, Zhu L (2015). Functional inactivation of putative photosynthetic electron acceptor ferredoxin C2 (FdC2) induces delayed heading date and decreased photosynthetic rate in rice. PLoS One 10, e0143-361.
[29] Zhu XY, Guo S, Wang ZW, Du Q, Xing YD, Zhang TQ, Shen WQ, Sang XC, Ling YH, He GH (2016). Map-based cloning and functional analysis of YGL8, which controls leaf colour in rice (Oryza sativa). BMC Plant Biol 16, 134.
文章导航

/