研究报告

水稻叶片水势的QTL定位与候选基因分析

展开
  • 浙江师范大学化学与生命科学学院, 金华 321004

收稿日期: 2021-02-22

  录用日期: 2021-03-26

  网络出版日期: 2021-04-21

基金资助

广西水稻遗传育种重点实验室开放基金(2018-15-Z06-KF12);中国水稻生物学国家重点实验室研究基金No(20200102);浙江省教育厅项目No(Y202045759、2020);年国家级大学生创新创业训练计划No(202010345067);2021年国家级大学生创新创业训练计划No(202110345010)

QTL Mapping and Candidate Gene Analysis on Rice Leaf Water Potential

Expand
  • College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China

Received date: 2021-02-22

  Accepted date: 2021-03-26

  Online published: 2021-04-21

摘要

为探究叶片水势(LWP)相关基因在水稻(Oryza sativa)抗旱中的作用及其遗传机制, 以热研2号(Nekken2)和华占(HZ)为亲本以及构建的120个重组自交系(RILs)群体为实验材料, 对水稻分蘖期叶片水势进行检测, 并利用前期基于高通量测序构建的分子遗传连锁图谱进行数量性状基因座(QTL)分析。结果表明, 共检测到5个与水稻分蘖期叶片水势相关的QTLs, 分别位于第2、3、4、11和12号染色体上, LOD值均达2.5以上, 其中位于4号染色体物理距离24 066 261- 30 847 136 bp内QTL的LOD值高达5.15。对这些QTL区间内与水势相关的候选基因进行定量分析, 发现LOC_Os02g56630LOC_Os02g57720LOC_Os02g57580LOC_Os04g43730LOC_Os04g46490LOC_Os04g44570LOC_Os04g44060这7个基因在双亲间表达量差异显著。位于4号染色体QTL区间内LOC_Os04g46490基因的表达在两亲本间存在显著差异。对基因LOC_Os04g46490进行测序分析, 发现该基因在两亲本间共存在6处差异, 从而导致氨基酸序列的改变。通过QTL挖掘及相关基因表达分析, 发现这些基因与水稻叶片水势调控相关, 可能间接影响水稻的抗旱性。检测到的QTL位点对水势相关基因精细定位和克隆具有重要参考价值, 有助于进一步理解水稻叶片水势的遗传基础, 并为培育耐旱水稻新品种提供有利的基因资源。

本文引用格式

潘晨阳, 张月, 林晗, 陈芊羽, 杨凯如, 姜嘉骥, 李梦佳, 芦涛, 王珂欣, 路梅, 王盛, 叶涵斐, 饶玉春, 胡海涛 . 水稻叶片水势的QTL定位与候选基因分析[J]. 植物学报, 2021 , 56(3) : 275 -283 . DOI: 10.11983/CBB21039

Abstract

To reveal the role and genetic mechanism of genes related to leaf water potential (LWP) in rice drought resistance, the 120 recombinant inbred lines (RILs) populations derived from the cross of Nekken2 and HZ as well as the two parents were chosen as the experiment materials in this study. After testing and analyzing the leaf water potential at tillering stage, quantitative trait loci (QTL) were detected based on the molecular linkage map of these populations constructed by using high-throughput sequencing in the early stage. The experimental results showed that 5 QTLs related to leaf water potential at tillering stage were located on chromosome 2, 3, 4, 11 and 12, respectively, with LOD (likelihood of odd) value all above 2.5, one of which located on chromosome 4 with physical distance between 24 066 261 and 30 847 136 bp showed the highest LOD value of 5.15. Through quantitative analysis of these candidate genes relevant to leaf water potential within the QTL regions, 7 genes, LOC_Os02g56630, LOC_Os02g57720, LOC_Os02g57580, LOC_ Os04g43730, LOC_Os04g46490, LOC_Os04g44570, LOC_Os04g44060, were identified to have different expression levels between the two parents. LOC_Os04g46490, which located within the QTL region on chromosome 4, showed significant difference in gene expression and 6 differences at DNA sequences and changes at amino acids between two parents. By QTL mining and quantitative analysis of related genes, we discovered that these genes were associated with the regulation of leaf water potential, which may indirectly affect the drought resistance of rice. The detected QTL loci have important reference value for QTL fine mapping and genes cloning associated with drought tolerance, thus facilitating our understanding of the genetic basis of rice leaf water potential, and providing genetic resources for developing new drought-tolerant rice cultivars.

参考文献

1 曹玉婷, 丁艳菲, 朱诚 (2014). 类受体蛋白激酶与植物非生物胁迫应答. 中国生物化学与分子生物学报 30, 241-247.
2 高世斌, 冯质雷, 李晚忱, 荣廷昭 (2005). 干旱胁迫下玉米根系性状和产量的QTLs分析. 作物学报 31, 718-722.
3 刘鸿艳, 邹桂花, 刘国兰, 胡颂平, 李明寿, 余新桥, 梅捍卫, 罗利军 (2005). 水分梯度下水稻CT, LWP和SF的相关及其QTL定位研究. 科学通报 50, 130-139.
4 穆平 (2004). 水、旱稻DH和RIL群体抗旱性状相关分析及其QTL表达规律比较. 博士论文. 北京: 中国农业大学. pp. 1-115.
5 聂元元, 邹桂花, 李瑶, 刘国兰, 蔡耀辉, 毛凌华, 颜龙安, 刘鸿艳, 罗利军 (2012). 水稻第2染色体上抗旱相关性状QTL的精细定位. 作物学报 38, 988-995.
6 潘琰, 龚吉蕊, 宝音陶格涛, 罗亲普, 翟占伟, 徐沙, 王忆慧, 刘敏, 杨丽丽 (2017). 季节放牧下内蒙古温带草原羊草根茎叶功能性状的权衡. 植物学报 52, 307-321.
7 邱泽森, 朱庆森, 刘建国, 巫亚东, 杨建昌 (1993). 水稻在不同土水势下的生理反应. 江苏农学院学报 14(2), 7-11.
8 曲延英, 穆平, 李雪琴, 田玉秀, 文峰, 张洪亮, 李自超 (2008). 水、旱栽培条件下水稻叶片水势与抗旱性的相关分析及其QTL定位. 作物学报 34, 198-206.
9 王辉, 曹立勇, 郭玉华, 程式华 (2008). 水稻生理特性与抗旱性的相关分析及QTL定位. 中国水稻科学 22, 477-484.
10 王兰, 黄李超, 代丽萍, 杨窑龙, 徐杰, 冷语佳, 张光恒, 胡江, 朱丽, 高振宇, 董国军, 郭龙彪, 钱前, 曾大力 (2014). 利用日本晴/9311重组自交系群体定位水稻成熟期叶形相关性状QTL. 中国水稻科学 28, 589-597.
11 于利刚, 解莉楠, 李玉花 (2011). 植物抗逆反应中水孔蛋白的表达调控研究. 生物技术通报 27(8), 5-14.
12 赵秀琴, 徐建龙, 朱苓华, 黎志康 (2008). 利用回交导入系定位干旱环境下水稻植株水分状况相关QTL. 作物学报 34, 1696-1703.
13 朱鸿宇, 王盛, 张月, 林晗, 路梅, 吴先美, 李三峰, 朱旭东, 饶玉春, 王跃星 (2020). 水稻籽粒砷、铜、铁、汞、锌含量QTL挖掘及候选基因分析. 中国科学: 生命科学 50, 623-632.
14 Aza-González C, Herrera-Isidrón L, Nú?ez-Palenius HG, De La Vega OM, Ochoa-Alejo N (2013). Anthocyanin accumulation and expression analysis of biosynthesis- related genes during chili pepper fruit development. Biol Plantarum 57, 49-55.
15 Hemamalini GS, Shashidhar HE, Hittalmani S (2000). Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice (Oryza sativa L.). Euphytica 112, 69-78.
16 Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C, Kjellbom P (1998). Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10, 451-459.
17 Johansson I, Larsson C, Ek B, Kjellbom P (1996). The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca 2+ and apoplastic water potential . Plant Cell 8, 1181-1191.
18 Jongdee B, Fukai S, Cooper M (2002). Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Res 76, 153-163.
19 Li LG, Li SF, Tao Y, Kitagawa Y (2000). Molecular cloning of a novel water channel from rice: its products expression in Xenopus oocytes and involvement in chilling tolerance. Plant Sci 154, 43-51.
20 Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method . Methods 25, 402-408.
21 Marrs KA, Alfenito MR, Lloyd AM, Walbot V (1995). A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375, 397-400.
22 Mathews H, Clendennen SK, Caldwell CG, Liu XL, Connors K, Matheis N, Schuster DK, Menasco DJ, Wago- ner W, Lightner J, Wagner DR (2003). Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15, 1689-1703.
23 McCouch SR, Cho YG, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T (1997). Report on QTL nomenclature. Rice Genet Newsl 14, 11-13.
24 Mueller LA, Goodman CD, Silady RA, Walbot V (2000). AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol 123, 1561-1570.
25 Pivovaroff AL, Pasquini SC, De Guzman ME, Alstad KP, Stemke JS, Santiago LS (2016). Multiple strategies for drought survival among woody plant species. Funct Ecol 30, 517-526.
26 Shinozaki K, Yamaguchi-Shinozaki K (1997). Gene expression and signal transduction in water-stress response. Plant Physiol 115, 327-334.
27 Wang YJ, Huang JK, Wang JX, Findlay C (2018). Miti-gating rice production risks from drought through improving irrigation infrastructure and management in China. Aust J Agric Resour Econ 62, 161-176.
28 Zhou Q, Ju CX, Wang ZQ, Zhang H, Liu LJ, Yang JC, Zhang JH (2017). Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation. J Integr Agric 16, 1028-1043.
文章导航

/