[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]中国传统大菊叶片形态的数量化定义与分类
收稿日期: 2020-02-02
录用日期: 2020-11-11
网络出版日期: 2020-11-11
基金资助
北京市科技计划(Z191100008519002);国家自然科学基金(31530064);国家重点研发计划(2018YFD1000405)
Quantitative Definition and Classification of Leaves in Large- flowered Chinese Chrysanthemum Based on the Morphological Traits
Received date: 2020-02-02
Accepted date: 2020-11-11
Online published: 2020-11-11
中国传统大菊品种叶片形态变异丰富, 然而至今仍未对其进行科学的定义和分类, 无法有效利用这些形态性状进行品种鉴定和叶形遗传解析。利用数量化分析方法对植物形态进行定义和分类, 是植物性状遗传解析的前提。对436个中国传统大菊品种的24个叶形性状进行重新定义及观测, 通过相关性分析确定了8个相对独立的性状, 用变异系数及主成分分析等数量化分析方法筛选出叶长/叶宽、叶片最宽处所在位置/叶长、右下裂片长/右下叶脉长、右下裂片长/右下裂片宽及叶柄长/全叶长5个相对独立且关键的叶部性状。利用这5个性状, 通过Q聚类分析, 最终将菊花(Chrysanthemum × morifolium)叶片分为16种叶型。研究结果为菊花品种鉴定提供了有效的叶部评价标准, 并建立了中国传统菊花品种叶片数量化定义和分类体系, 也为观赏植物复杂性状的解析提供了新方法。
宋雪彬, 高康, 黄河, 刘芷兰, 戴思兰, 嵇彧 . 中国传统大菊叶片形态的数量化定义与分类[J]. 植物学报, 2021 , 56(1) : 10 -24 . DOI: 10.11983/CBB20014
The leaf morphology of Chinese traditional chrysanthemum varieties is very variable, but it has not been scientifically defined and classified, so it is impossible to make effective use of these morphological traits for variety identification and genetic analysis. The definition and classification of plant morphology by quantitative analysis is the premise of genetic analysis of plant traits. In this study, 24 leaf traits of 436 chrysanthemum varieties were re-defined and measured. The correlation analysis identified 8 relatively independent traits, and principal component analysis further focused on 5 key traits, including the leaf blade length/leaf blade width, widest part length/leaf blade length, right lower leaf lobe length/leaf vein length of right lower lobe, right lower leaf lobe length/right lower leaf lobe width, leaf petiole length/leaf blade length. The leaf shapes were classified into 16 types by Q clustering analysis. This study established a quantitative definition and classification system for the leaves of Chinese traditional chrysanthemum varieties. It provided an effective leaf evaluation standard for the identification of chrysanthemum varieties, and a new method for the analysis of complex traits of ornamental plants.
[1] | 陈模舜, 金则新, 柯世省 (2018). 不同光环境下天台鹅耳枥叶形变化的测定与分析. 林业科学 54, 54-63. |
[2] | 陈旭波, 孟世勇, 刘全儒 (2012). 石竹科繁缕属与鹅肠菜属的数量分类. 植物学报 47, 271-277. |
[3] | 楚爱香, 杨英军, 汤庚国, 童丽丽 (2009). 河南垂丝海棠品种数量分类研究. 园艺学报 36, 377-384. |
[4] | 樊光迅, 亓帅, 王文奎, 戴思兰 (2016). 毛华菊形态性状变异的数学分析. 见: 中国观赏园艺研究进展2016. 北京: 中国林业出版社. pp. 134-141. |
[5] | 方玉霖, 刘剑秋, 姜业芳 (2002). 福建薯蓣属植物叶脉序特征及其分类学意义. 福建师范大学学报(自然科学版) 18(2), 65-69. |
[6] | 傅弘, 池哲儒, 常杰, 傅承新 (2004). 基于人工神经网络的叶脉信息提取——植物活体机器识别研究. 植物学通报 21, 429-436. |
[7] | 高鹤, 刘启新, 宋春凤, 吴宝成, 周伟, 韦苏晏 (2015). 基于分形方法探讨槭属(Acer Linn.)植物叶片的形态多样性及其系统学意义. 植物资源与环境学报 24(2), 1-10. |
[8] | 高永华 (2014). 野生小红菊驯化栽培和花芽分化条件研究. 硕士论文. 晋中: 山西农业大学. pp. 8-9. |
[9] | 高志朋, 邵秀玲, 范晓虹, 张伟 (2017). 山东常见蒿属植物叶形变异分类研究及在杂草检疫中的应用价值. 植物检疫 31(6), 30-37. |
[10] | 何江 (2017). 40份番石榴种质资源亲缘关系的形态学性状和SCoT研究. 硕士论文. 南宁: 广西大学. pp. 22-25. |
[11] | 何文奇 (2012). 翅果菊属Pterocypsela Shih (菊科-菊苣族)分类学研究. 硕士论文. 郑州: 郑州大学. pp. 10-12. |
[12] | 洪艳, 白新祥, 孙卫, 贾锋炜, 戴思兰 (2012). 菊花品种花色表型数量分类研究. 园艺学报 39, 1330-1340. |
[13] | 黄文娟, 李志军, 杨赵平, 白冠章 (2010). 胡杨异形叶结构型性状及其相互关系. 生态学报 30, 4636-4642. |
[14] | 李娜娜 (2012). 单头切花菊新品种培育. 硕士论文. 北京: 北京林业大学. pp. 31-37. |
[15] | 李仁伟, 王晨, 戴思兰, 雒新艳, 李宝琴, 朱珺, 卢洁, 刘倩倩 (2012). 菊花品种表型性状与SRAP分子标记的关联分析. 中国农业科学 45, 1355-1364. |
[16] | 李晓兰, 李雪华, 蒋德明, 刘志民, 王红梅, 姬兰柱 (2005). 科尔沁沙地22种菊科草本植物叶片形态特征研究. 生态学杂志 24, 1397-1401. |
[17] | 刘孟军 (1996). 枣树数量性状的概率分级研究. 园艺学报 23, 105-109. |
[18] | 刘倩倩 (2007). 中国大菊品种形态分类及细胞学研究. 硕士论文. 北京: 北京林业大学. pp. 14-27. |
[19] | 刘文啟, 陆以云, 康帅, 严华, 魏锋, 马双成 (2015). 不同叶形曼陀罗叶结构比较及鉴别方法研究. 药物分析杂志 35, 1092-1098. |
[20] | 陆时万, 徐祥生, 沈敏健 (1991). 植物学. 北京: 高等教育出版社. pp. 144-149. |
[21] | 雒新艳, 戴思兰 (2010). 大菊品种表型性状的分类学价值. 北京林业大学学报 32(3), 135-140. |
[22] | 马炜梁 (2009). 植物学. 北京: 高等教育出版社. pp. 68-75. |
[23] | 祁栋灵, 周庆阳, 刘三军, 李靖 (2005). 利用叶形结构数值分析葡萄种质亲缘关系的研究. 中国南方果树 ( 3), 64-66. |
[24] | 沈凤, 蒋逍逍, 房伟民, 管志勇, 邓波, 陈发棣 (2018). 切花菊叶片的遗传多样性分析. 南京农业大学学报 41, 275-285. |
[25] | 唐俊, 邓立苗, 陈辉, 栾涛, 马文杰 (2014). 基于机器视觉的玉米叶片透射图像特征识别研究. 中国农业科学 47, 431-440. |
[26] | 王江民, 陈发棣, 房伟民, 陈素梅, 管志勇, 唐海艳 (2013). 基于叶形特征的切花菊品种鉴别. 植物学报 48, 608-615. |
[27] | 王丽君, 淮永建, 彭月橙 (2015). 基于叶片图像多特征融合的观叶植物种类识别. 北京林业大学学报 37, 55-61. |
[28] | 许炳强, 夏念和, 王少平, 郝刚 (2007). 中国木犀属植物叶脉形态及其分类学意义. 广西植物 27, 697-705, 696. |
[29] | 徐静静, 赵冰, 申惠翡, 刘旭梅, 高晓宁 (2017). 15个杜鹃花品种叶片解剖和表型数量分类研究. 西北林学院学报 32, 142-149. |
[30] | 许莹修 (2005). 菊花形态性状多样性和品种分类的研究. 硕士论文. 北京: 北京林业大学. pp. 1-7. |
[31] | 薛守纪 (2004). 中国菊花图谱. 北京: 中国林业出版社. pp. 9-10. |
[32] | 尹克林, 梁武, 诸葛宏庆 (1998). 酿酒葡萄品种‘蛇龙珠’的叶形结构数值鉴别. 园艺学报 25(2), 189-190. |
[33] | 翟传敏, 汪青萍, 杜吉祥 (2014). 基于叶缘与叶脉分数维特征的植物叶识别方法研究. 计算机科学 41(2), 170-173. |
[34] | 张诚 (2006). 葡萄叶形结构和品种鉴别相关性研究. 硕士论文. 重庆: 西南大学. pp. 27-51. |
[35] | 张莉俊, 戴思兰 (2009). 菊花种质资源研究进展. 植物学报 44, 526-535. |
[36] | 张蒙蒙, 王青, 戴思兰, 季玉山, 王朔 (2014). 盆栽小菊表型性状筛选与品种分类研究. 见: 中国观赏园艺研究进展(2014). 北京: 中国林业出版社. pp. 103-109. |
[37] | 张宁, 刘文萍 (2011). 基于图像分析的植物叶片识别技术综述. 计算机应用研究 28, 4001-4007. |
[38] | 张树林, 戴思兰 (2013). 中国菊花全书. 北京: 中国林业出版社. pp. 134-278. |
[39] | 张辕 (2014). 基于三种标记的中国传统菊花品种鉴定及分类研究. 博士论文. 北京: 北京林业大学. pp. 27-50. |
[40] | 赵冰, 雒新艳, 张启翔 (2007). 蜡梅品种的数量分类研究. 园艺学报 34, 947-954. |
[41] | 镇兰萍 (2013). 安徽野生菊属药用植物的形态与显微特征比较研究. 硕士论文. 合肥: 安徽中医药大学. pp. 21-22. |
[42] | 中华人民共和国农业农村部 (2018). 植物品种特异性、一致性和稳定性测试指南——菊花: GB/T 19557.19—2018. 北京: 中国标准出版社. pp. 12-44. |
[43] | 周桂玲, 魏岩 (2002). 十字花科四属植物叶片脉序的比较研究. 武汉植物学研究 20, 258-262. |
[44] | 朱静, 田兴军, 陈彬, 吕劲紫 (2005). 植物叶形的计算机识别系统. 植物学通报 22, 599-604. |
[45] | 左力辉, 张文林, 邱彤, 张军, 杨敏生 (2015). 新疆野苹果叶形性状变异及其与SSR标记关联分析. 园艺学报 42, 759-768. |
[46] | Abbasi S, Mokhtarian F, Kittler J (1997). Reliable classification of chrysanthemum leaves through curvature scale space. In: Proceedings of the 1st International Conference on Scale-Space Theories in Computer Vision. Utrecht: Springer. pp. 284-295. |
[47] | Chaki J, Parekh R (2011). Plant leaf recognition using shape based features and neural network classifiers. Int J Adv Comput Sci Appl 2, 41-47. |
[48] | Chatrou L (1997). Studies in Annonaceae. XXVIII. Macromorphological variation of recent invaders in northern Central America: the case of Malmea (Annonaceae). Am J Bot 84, 861-869. |
[49] | Chitwood DH, Headland LR, Kumar R, Peng J, Maloof JN, Sinha NR (2012). The developmental trajectory of leaflet morphology in wild tomato species. Plant Physiol 158, 1230-1240. |
[50] | Chitwood DH, Kumar R, Headland LR, Ranjan A, Covington MF, Ichihashi Y, Fulop D, Jiménez-Gómez JM, Peng J, Maloof JN, Sinha NR (2013). A quantitative genetic basis for leaf morphology in a set of precisely defined tomato introgression lines. Plant Cell 25, 2465-2481. |
[51] | Chitwood DH, Otoni WC (2017). Morphometric analysis of Passiflora leaves: the relationship between landmarks of the vasculature and elliptical Fourier descriptors of the blade. GigaScience 6, giw008. |
[52] | Chitwood DH, Ranjan A, Kumar R, Ichihashi Y, Zumstein K, Headland LR, Ostria-Gallardo E, Aguilar-Martínez JA, Bush S, Carriedo L, Fulop D, Martinez CC, Peng J, Maloof JN, Sinha NR (2014). Resolving distinct genetic regulators of tomato leaf shape within a heteroblastic and ontogenetic context. Plant Cell 26, 3616-3629. |
[53] | da Silva NR, Florindo JB, Gómez MC, Rossatto DR, Kolb RM, Bruno OM (2015). Plant identification based on leaf midrib cross-section images using fractal descriptors. PLoS One 10, e0130014. |
[54] | Dejong J, Drennan DL (1984). Genetic analysis in Chrysanthemum morifolium. II. flower doubleness and ray floret corolla splitting. Euphytica 33, 465-470. |
[55] | Gao K, Song XB, Kong DY, Dai SL (2020). Genetic analysis of leaf traits in small-flower chrysanthemum (Chrysanthemum × morifolium Ramat.). Agronomy 10, 697. |
[56] | Jones CS (1992). Comparative ontogeny of a wild cucurbit and its derived cultivar. Evolution 46, 1827-1847. |
[57] | Khadivi-Khub A, Zamani Z, Fatahi MR (2012). Multivariate analysis of Prunus subgen. Cerasus germplasm in Iran using morphological variables. Genet Resour Crop Evol 59, 909-926. |
[58] | Klingenberg CP (2010). Evolution and development of shape: integrating quantitative approaches. Nat Rev Genet 11, 623-635. |
[59] | Mallah C, Cope J, Orwell J (2013). Plant leaf classification using probabilistic integration of shape, texture and margin features. In: Computer Graphics and Imaging/798: Signal Processing, Pattern Recognition and Applications. Innsbruck: ACTA Press. pp. 1-8. |
[60] | McLellan T (2000). Geographic variation and plasticity of leaf shape and size in Begonia dregei and B. homonyma (Begoniaceae). Bot J Linn Soc 132, 79-95. |
[61] | Min Z, Li RL, Zhao XF, Li RY, Zhang Y, Liu M, Wei XF, Fang YL, Chen SX (2018). Morphological variability in leaves of Chinese wild Vitis species. Sci Hortic 238, 138-146. |
[62] | Mokhtarian F, Abbasi S (2004). Matching shapes with self-intersections: application to leaf classification. IEEE T Image Process 13, 653-661. |
[63] | Moreno-Sánchez M (2004). Graphic approach for morphometric analysis of Archaeopteris leaves. Ann Paléontol 90, 161-173. |
[64] | Nicotra AB, Leigh A, Boyce CK, Jones CS, Niklas KJ, Royer DL, Tsukaya H (2011). The evolution and functional significance of leaf shape in the angiosperms. Funct Plant Biol 38, 535-552. |
[65] | Niinemets ü, Portsmuth A, Tobias M (2007). Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species: a neglected source of leaf physiological differentiation? Funct Ecol 21, 28-40. |
[66] | Song XB, Gao K, Fan GX, Zhao XG, Liu ZL, Dai SL (2018a). Quantitative classification of the morphological traits of ray florets in large-flowered chrysanthemum. HortScience 53, 1258-1265. |
[67] | Song XB, Zhao XG, Fan GX, Gao K, Dai SL, Zhang MM, Ma CF, Wu XY (2018b). Genetic analysis of the corolla tube merged degree and the relative number of ray florets in chrysanthemum (Chrysanthemum × morifolium Ramat.). Sci Hortic 242, 214-224. |
[68] | Zhang Y, Luo XY, Zhu J, Wang C, Hong Y, Lu J, Liu QQ, Li BQ, Zhu ML, Wang ZF, Zhang YQ, Song XB, Lv PY, Dai SL (2014). A classification study for chrysanthemum (Chrysanthemum × grandiflorum Tzvelv.) cultivars based on multivariate statistical analyses. J Syst Evol 52, 612-628. |
/
〈 | 〉 |