研究论文

再生水补给河道内芦苇的光谱特征及其对水体氮和磷含量的响应

展开
  • 1中国科学院地理科学与资源研究所, 陆地水循环及地表过程院重点实验室, 北京 100101
    2中国科学院大学, 资源与环境学院, 北京 100049
    3立命馆亚洲太平洋大学, 亚洲太平洋学院, 大分県別府市, 日本

收稿日期: 2020-05-15

  录用日期: 2020-07-29

  网络出版日期: 2020-07-29

基金资助

国家自然科学基金重点项目(41730749);北京市自然科学基金(8172044)

Spectral Characteristics of Phragmites australis and Its Response to Riverine Nitrogen and Phosphorus Contents in River Reaches Restored by Reclaimed Water

Expand
  • 1Key Laboratory of Water Cycle and Related Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    2College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
    3College of Asia Pacific Studies, Ritsumeikan Asia Pacific University, Oita Beppu, Japan

Received date: 2020-05-15

  Accepted date: 2020-07-29

  Online published: 2020-07-29

摘要

再生水是城市景观河湖的重要补给水源, 然而再生水中含量较高的氮和磷营养盐会引起水体富营养化, 破坏水生态平衡。以再生水补给的潮白河为研究区, 运用高光谱技术分析了挺水植物芦苇(Phragmites australis)叶片的光谱特征, 并结合水质数据, 通过拟合模型, 探究了芦苇对再生水中氮和磷的响应关系。结果表明, 各采样点水体的总氮(TN)和总磷(TP)含量分别介于1.85-18.16 mg·L-1及0.01-0.36 mg·L-1之间, 叶绿素a (Chl a)和溶解氧(DO)含量的范围分别为0.60-47.45 μg·L-1与4.24-11.4 mg·L-1。水体富营养化较为严重, 但仍处于富氧环境。多重方差分析表明, 不同采样点之间水体的TN、TP和Chl a含量差异显著(P<0.05)。由光谱反射率及反射率一阶导数曲线可知, 水体TN含量越高, 叶片光谱在可见光区的反射率越小, 红边位置也越向波长长的方向移动(即红移)。相关分析表明, 水体TN和TP含量与吸光度值log(1/R)在可见光区的相关性较强, 且TN与log(1/R)的相关系数高于TP。芦苇叶片光谱可在一定程度上区分水体TN含量差异, 但TP对光谱特征的影响模式不明显。光谱指数与水体TN含量之间的拟合模型中, 基于光化学指数(PRI)、修正叶绿素吸收指数(MCARI)和导数叶绿素指数(DCI)的模型能够解释水体TN含量变化的62.4%-70.9% (P<0.05), 可用于再生水氮含量的定量监测。该研究证明了植物光谱技术在水体富营养化监测上的可行性, 为保障再生水修复河道水质和生态安全提供了科学依据。

本文引用格式

赵睿, 卜红梅, 宋献方, 高融瑾 . 再生水补给河道内芦苇的光谱特征及其对水体氮和磷含量的响应[J]. 植物学报, 2020 , 55(6) : 666 -676 . DOI: 10.11983/CBB20085

Abstract

Reclaimed water is an important water source replenishing rivers and lakes for urban landscape. Higher contents of nitrogen and phosphorus in reclaimed water will cause eutrophication, disrupting the balance of hydro-ecology. Hyperspectral technology was applied to analyze the spectral characteristics of the emergent plant Phragmites australis, and the spectral characteristics response of P. australis leaf to nitrogen and phosphorus contents were explored in the Chaobai River restored by reclaimed water. Results showed that concentrations of total nitrogen (TN), total phosphorus (TP), chlorophyll a (Chl a), and dissolved oxygen (DO) were 1.85-18.16 mg·L -1, 0.01-0.36 mg·L-1, 0.60-47.45 μg·L -1, and 4.24-11.4 mg·L-1, respectively. Although the river water eutrophication was serious, it was still in an oxygen-rich environment. The results showed that there were significant differences in the concentrations of TN, TP, and Chl a among sampling sites (P<0.05) in multiple analysis of variance. With the increasing of riverine TN concentrations, the reflectance of leaf spectrum in the visible band lowered and the position of red edge also moved towards higher wavelength (i.e., redshift). The riverine TN and TP contents had significant correlations with the absorbance value log(1/R) in the visible band in correlation analysis, and the correlation coefficients between TN and log(1/R) were higher than that of TP. The difference of TN concentrations could be inferred by the spectrum of P. australis leaf to a certain extent, while the effect of TP on spectral characteristics was weaker than TN. TN was selected to establish fitting models with different spectral indices. Based on the photochemical reflectance index (PRI), the modified chlorophyll absorption ratio index (MCARI) and the derivative chlorophyll index (DCI), the exponential equations explained 62.4%-70.9% of TN (P<0.05), which could be useful for quantitatively monitoring of nitrogen contents in reclaimed water. This research proved practicability of plant spectrum technology in water eutrophication monitoring, providing a scientific basis for ensuring water quality safety and ecological security in rivers and lakes restored by reclaimed water.

参考文献

[1] 迟光宇, 刘新会, 刘素红, 杨志峰 (2005). 环境污染监测中的植物光谱效应研究. 环境科学与技术 28(S1), 16-19.
[2] 宫兆宁, 范云豹, 刘辉, 赵文吉 (2016). 不同水氮梯度下典型挺水植物叶绿素荧光的响应特性. 植物学报 51, 631-638.
[3] 顾永钢, 吴晓辉, 李兆欣, 赵立新, 刘操 (2017). 潮白河再生水受水区水体水质沿程变化规律研究. 北京水务 (1), 29-35.
[4] 李玲玉, 杨浩萌, 任为波, 吴新宏, 黄芳 (2017). 利用叶绿素荧光评估草原植物羊草缺磷缺氮状况. 植物学报 52, 271-277.
[5] 李哲, 张飞, 陈丽华, 张海威 (2018). 光谱指数的植物叶片叶绿素含量估算模型. 光谱学与光谱分析 38, 1533-1539.
[6] 刘辉, 宫兆宁, 赵文吉 (2014). 基于挺水植物高光谱信息的再生水总氮含量估测——以北京市门城湖湿地公园为例. 应用生态学报 25, 3609-3618.
[7] 刘克, 唐新明, 赵文吉, 雷兵, 郭逍宇, 宫兆宁 (2015). 水体总氮浓度与湿地芦苇叶片高光谱特征关系研究. 地理与地理信息科学 31(2), 24-28.
[8] 刘克, 赵文吉, 郭逍宇, 王翊虹, 孙永华, 苗茜, 王京萌 (2012). 基于湿地植物光谱的水体总氮估测. 生态学报 32, 2410-2419.
[9] 刘瑞斌 (2019). 人工湿地植物群落造景艺术研究——评《人工湿地植物配置与管理》. 植物学报 54, 674.
[10] 任红艳, 庄大方, 潘剑君, 邱冬生, 张佳宝 (2008). 磷营养胁迫对冬小麦冠层光谱的影响. 土壤通报 39, 1326-1330.
[11] 王健, 何江涛, 刘玉梅, 姜烈 (2014). 潮白河再生水受水区水质变化特征多元统计分析. 环境科学与技术 37(6), 171-176.
[12] 薛利红, 曹卫星, 罗卫红, 张宪 (2004). 小麦叶片氮素状况与光谱特性的相关性研究. 植物生态学报 28, 172-177.
[13] 薛利红, 卢萍, 杨林章, 单玉华, 范晓晖, 韩勇 (2006). 利用水稻冠层光谱特征诊断土壤氮素营养状况. 植物生态学报 30, 675-681.
[14] 于一雷 (2013). 河道景观再生水对地下水影响研究——以潮白河北京段为例. 博士论文. 北京: 中国科学院大学. pp. 18-20.
[15] 张丽彬, 王启山, 徐新惠, 丁丽丽, 任洪强 (2008). 乙醇法测定浮游植物叶绿素a含量的讨论. 中国环境监测 24(6), 9-10.
[16] 张璐, 何新华 (2020). C3和C4植物的氮素利用机制. 植物学报 55, 228-239.
[17] ?张茜, 裘天航, 王安安, 周华健, 袁敏, 李利, 白素兰, 崔素霞 (2020). 北京地区芦苇资源状态及其多样性. 植物学报 55, 693-704.
[18] ?gren GI (2004). The C:N:P stoichiometry of autotrophs- theory and observations. Ecol Lett 7, 185-191.
[19] ?gren GI (2008). Stoichiometry and nutrition of plant growth in natural communities. Annu Rev Ecol Evol Syst 39, 153-170.
[20] Bricker SB, Ferreira JG, Simas T (2003). An integrated methodology for assessment of estuarine trophic status. Ecol Modell 169, 39-60.
[21] Chang DH, Ma Z (2012). Wastewater reclamation and reuse in Beijing: influence factors and policy implications. Desalination 297, 72-78.
[22] Daughtry CST, Walthall CL, Kim MS, De Colstoun EB, McMurtrey III JE (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens Environ 74, 229-239.
[23] Eitel JUH, Long DS, Gessler PE, Hunt ER (2008). Com-bined spectral index to improve ground-based estimates of nitrogen status in dryland wheat. Agron J 100, 1694-1702.
[24] Eller F, Skálová H, Caplan JS, Bhattarai GP, Burger MK, Cronin JT, Guo WY, Guo X, Hazelton ELG, Kettenring KM, Lambertini C, McCormick MK, Meyerson LA, Mozdzer TJ, Py?ek P, Sorrell BK, Whigham DF, Brix H (2017). Cosmopolitan species as models for ecophysio- logical responses to global change: the common reed Phragmites australis. Front Plant Sci 8, 1833.
[25] Gamon JA, Serrano L, Surfus JS (1997). The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 112, 492-501.
[26] Gitelson AA, Merzlyak MN (1997). Remote estimation of chlorophyll content in higher plant leaves. Int J Remote Sens 18, 2691-2697.
[27] Horler DNH, Dockray M, Barber J (1983). The red edge of plant leaf reflectance. Int J Remote Sens 4, 273-288.
[28] Knipling EB (1970). Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sens Environ 1, 155-159.
[29] Kokaly RF (2001). Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration. Remote Sens Environ 75, 153-161.
[30] Lamb DW, Steyn-Ross M, Schaare P, Hanna MM, Silvester W, Steyn-Ross A (2002). Estimating leaf nitrogen concentration in ryegrass ( Lolium spp.) pasture using the chlorophyll red-edge: theoretical modelling and experimental observations. Int J Remote Sens 23, 3619-3648.
[31] Li F, Miao YX, Hennig SD, Gnyp ML, Chen XP, Jia LL, Bareth G (2010). Evaluating hyperspectral vegetation indices for at different growth stages. Precision Agric 11, 335-357.
[32] Lyu S, Chen WP, Zhang WL, Fan YP, Jiao WT (2016). Wastewater reclamation and reuse in China: opportunities and challenges. J Environ Sci 39, 86-96.
[33] Mykleby PM, Awada T, Lenters JD, Bihmidine S, Yarina AJ, Young SL (2015). Responses of common reed (Ph-ragmites australis) to nitrogen and temperature manipulations. Great Plains Research 25, 63-74.
[34] Osborne SL, Schepers JS, Francis DD, Schlemmer MR (2002). Detection of phosphorus and nitrogen deficiencies in corn using spectral radiance measurements. Agron J 94, 1215-1221.
[35] Shrestha S, Brueck H, Asch F (2012). Chlorophyll index, photochemical reflectance index and chlorophyll fluorescence measurements of rice leaves supplied with different N levels. J Photochem Photobiol B 113, 7-13.
[36] Siciliano D, Wasson K, Potts DC, Olsen RC (2008). Evaluating hyperspectral imaging of wetland vegetation as a tool for detecting estuarine nutrient enrichment. Remote Sens Environ 112, 4020-4033.
[37] Tanner CC (1996). Plants for constructed wetland treatment systems—a comparison of the growth and nutrient uptake of eight emergent species. Ecol Eng 7, 59-83.
[38] Tilley DR, Ahmed M, Son JH, Badrinarayanan H (2003). Hyperspectral reflectance of emergent macrophytes as an indicator of water column ammonia in an oligohaline, subtropical marsh. Ecol Eng 21, 153-163.
[39] Wu CY, Niu Z, Tang Q, Huang WJ (2008). Estimating chlorophyll content from hyperspectral vegetation indices: modeling and validation. Agric For Meteorol 148, 1230-1241.
[40] Yang L, He JT, Liu YM, Wang J, Jiang L, Wang GC (2016). Characteristics of change in water quality along reclaimed water intake area of the Chaobai River in Beijing, China. J Environ Sci 50, 93-102.
[41] Yoder BJ, Pettigrew-Crosby RE (1995). Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400-2 500 nm) at leaf and canopy scales. Remote Sens Environ 53, 199-211.
[42] Zarco-Tejada PJ, Miller JR, Mohammed GH, Noland TL, Sampson PH (2002). Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery. J Environ Qual 31, 1433-1441.
[43] Zarco-Tejada PJ, Pushnik JC, Dobrowski S, Ustin SL (2003). Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak re- dedge effects. Remote Sens Environ 84, 283-294.
文章导航

/

674-3466/bottom_cn.htm"-->