专题论坛

植物嫁接愈合分子机制研究进展

展开
  • 中国农业科学院蔬菜花卉研究所, 北京 100081

收稿日期: 2020-04-09

  录用日期: 2020-06-28

  网络出版日期: 2020-06-29

基金资助

国家自然科学基金(31902004);国家现代农业产业技术体系建设专项资金(CARS-25);现代农业人才支撑计划(2016)

Recent Advances in Molecular Mechanisms of Plant Graft Healing Process

Expand
  • Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Received date: 2020-04-09

  Accepted date: 2020-06-28

  Online published: 2020-06-29

摘要

嫁接能显著改良单一品种的产量、品质和抗逆等性状, 已广泛应用于农业生产。促进砧木和接穗在嫁接面的快速愈合有利于提高嫁接效率。目前对嫁接愈合调控机制尚了解不足, 因此短时间内难以进行有效的技术改良。嫁接愈合过程包括先后发生的创伤应激响应、愈伤组织形成、砧穗细胞通讯以及砧穗再生重连等生理事件, 均涉及复杂而交联的激素应答及基因调控模式。近年来, 相关领域的研究成果为综合解析嫁接愈合的调控机制奠定了基础。该文综述了在嫁接愈合过程中发挥核心作用的植物激素及其应答方式, 以及激素依赖或非依赖的基因表达调控模式, 以期为深入揭示嫁接愈合分子机制提供参考。

本文引用格式

谢露露, 崔青青, 董春娟, 尚庆茂 . 植物嫁接愈合分子机制研究进展[J]. 植物学报, 2020 , 55(5) : 634 -643 . DOI: 10.11983/CBB20061

Abstract

Grafting can significantly improve target traits such as yield, quality, and resistance of vegetable varieties, and is widely applied in agricultural practice. Prompting graft healing between scion and stock at the graft interface is necessary to improve graft efficiency. Currently the improvement on the technology is hampered by our lack of understanding of regulatory mechanisms of graft healing. The graft healing process involves complicated and cross-linked physiological events, including wounding stress response, callus formation, cell communication between scion and stock, and the regeneration and reunion of scion and stock. Recent research has provided a good foundation for our understanding the molecular mechanisms of graft healing. In this review, we summarize the central roles of phytohormones in each of the physiological events, and the phytohormone-dependent and -independent gene regulatory networks in graft healing, to provide a reference for further studying graft healing-related molecular mechanisms.

参考文献

[1] 卢善发, 邵小明, 杨世杰 ( 1995). 嫁接植株形成过程中接合部组织学和生长素含量的变化. 植物学通报 12, 38-41.
[2] 苗丽, 李衍素, 范兴强, 贺超兴, 于贤昌 ( 2017). 植物嫁接体接口愈合机制的研究进展. 植物生理学报 53, 17-28.
[3] 王幼群 ( 2011). 植物嫁接系统及其在植物生命科学研究中的应用. 科学通报 56, 2478-2485.
[4] 赵渊渊, 董春娟, 赵建忠, 尚庆茂 ( 2015). 夜温对辣椒套管嫁接苗砧穗愈合的影响. 中国农业大学学报 20(5), 164-170.
[5] Asahina M, Azuma K, Pitaksaringkarn W, Yamazaki T, Mitsuda N, Ohme-Takagi M, Yamaguchi S, Kamiya Y, Okada K, Nishimura T, Koshiba T, Yokota T, Kamada H, Satoh S ( 2011). Spatially selective hormonal control of RAP2.6L and ANAC071 transcription factors involved in tissue reunion in Arabidopsis. Proc Natl Acad Sci USA 108, 16128-16132.
[6] Asahina M, Iwai H, Kikuchi A, Yamaguchi S, Kamiya Y, Kamada H, Satoh S ( 2002). Gibberellin produced in the cotyledon is required for cell division during tissue reunion in the cortex of cut cucumber and tomato hypocotyls. Plant Physiol 129, 201-210.
[7] Asahina M, Yamauchi Y, Hanada A, Kamiya Y, Kamada H, Satoh S, Yamaguchi S ( 2007). Effects of the removal of cotyledons on endogenous gibberellin levels in hypocotyls of young cucumber and tomato seedlings. Plant Biotechnol 24, 99-106.
[8] Ca?o-Delgado A, Lee JY, Demura T ( 2010). Regulatory mechanisms for specification and patterning of plant vascular tissues. Annu Rev Cell Dev Biol 26, 605-637.
[9] Chikano H, Ogawa M, Ikeda Y, Koizumi N, Kusano T, Sano H ( 2001). Two novel genes encoding SNF1-related protein kinases from Arabidopsis thaliana: differential accumulation of AtSR1 and AtSR2 transcripts in response to cytokinins and sugars, and phosphorylation of sucrose synthase by AtSR2. Mol Gen Genet 264, 674-681.
[10] Cookson SJ, Moreno MJC, Hevin C, Mendome LZN, Delrot S, Trossat-Magnin C, Ollat N ( 2013). Graft union formation in grapevine induces transcriptional changes related to cell wall modification, wounding, hormone signaling, and secondary metabolism. J Exp Bot 64, 2997-3008.
[11] den Boer BGW, Murray JAH ( 2000). Triggering the cell cycle in plants. Trends Cell Biol 10, 245-250.
[12] Donner TJ, Sherr I, Scarpella E ( 2009). Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves. Development 136, 3235-3246.
[13] Elhiti M, Stasolla C (2015). ROS signaling in plant embryogenesis. In: Gupta KJ, Igamberdiev AU, eds. Reactive Oxygen and Nitrogen Species Signaling and Communication in Plants. Cham: Springer. pp. 197-214.
[14] Fernández-García N, Carvajal M, Olmos E ( 2004). Graft union formation in tomato plants: peroxidase and catalase involvement. Ann Bot 93, 53-60.
[15] Gautier AT, Chambaud C, Brocard L, Ollat N, Gambetta GA, Delrot S, Cookson SJ ( 2019). Merging genotypes: graft union formation and scion-rootstock interactions. J Exp Bot 70, 747-755.
[16] Glauser G, Dubugnon L, Mousavi SAR, Rudaz S, Wolfender JL, Farmer EE ( 2009). Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis. J Biol Chem 284, 34506-34513.
[17] Glauser G, Grata E, Dubugnon L, Rudaz S, Farmer EE, Wolfender JL ( 2008). Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. J Biol Chem 283, 16400-16407.
[18] Goldschmidt EE ( 2014). Plant grafting: new mechanisms, evolutionary implications. Front Plant Sci 5, 727.
[19] Howe GA ( 2010). The roles of hormones in defense against insects and disease. Plant hormones. New York: Springer.
[20] Huang Y, Kong QS, Chen F, Bie ZL ( 2015). The history, current status and future prospects of vegetable grafting in China. Acta Hortic 1086, 31-39.
[21] Ikeuchi M, Iwase A, Rymen B, Lambolez A, Kojima M, Takebayashi Y, Heyman J, Watanabe S, Seo M, De Veylder L, Sakakibara H, Sugimoto K ( 2017). Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiol 175, 1158-1174.
[22] Ikeuchi M, Sugimoto K, Iwase A ( 2013). Plant callus: mechanisms of induction and repression. Plant Cell 25, 3159-3173.
[23] Inzé D, De Veylder L ( 2006). Cell cycle regulation in plant development. Annu Rev Genet 40, 77-105.
[24] Iwase A, Harashima H, Ikeuchi M, Rymen B, Ohnuma M, Komaki S, Morohashi K, Kurata T, Nakata M, Ohme- Takagi M, Grotewold E, Sugimoto K ( 2017). WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis. Plant Cell 29, 54-69.
[25] Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, Arai T, Inoue Y, Seki M, Sakakibara H, Sugimoto K, Ohme-Takagi M ( 2011). The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Curr Biol 21, 508-514.
[26] Johkan M, Mitukuri K, Yamasaki S, Mori G, Oda M ( 2009). Causes of defoliation and low survival rate of grafted sweet pepper plants. Sci Hortic 119, 103-107.
[27] Johkan M, Oda M, Mori G ( 2008). Ascorbic acid promotes graft-take in sweet pepper plants (Capsicum annuum L.). Sci Hortic 116, 343-347.
[28] Kawaguchi M, Taji A, Backhouse D, Oda M ( 2008). Anatomy and physiology of graft incompatibility in solanaceous plants. J Hortic Sci Biotechnol 83, 581-588.
[29] Koornneef A, Leon-Reyes A, Ritsema T, Verhage A, Den Otter FC, Van Loon LC, Pieterse CMJ ( 2008). Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiol 147, 1358-1368.
[30] Lee JM, Kubota C, Tsao SJ, Bie Z, Echevarria PH, Morra L, Oda M ( 2010). Current status of vegetable grafting: diffusion, grafting techniques, automation. Sci Hortic 127, 93-105.
[31] Lee JY, Wang X, Cui W, Sager R, Modla S, Czymmek K, Zybaliov B, van Wijk K, Zhang C, Lu H, Lakshmanan V ( 2011). A plasmodesmata-localized protein mediates crosstalk between cell-to-cell communication and innate immunity in Arabidopsis. Plant Cell 23, 3353-3373.
[32] Lee JY ( 2015). Plasmodesmata: a signaling hub at the cellular boundary. Curr Opin Plant Biol 27, 133-140.
[33] Matsuoka K, Sugawara E, Aoki R, Takuma K, Terao- Morita M, Satoh S, Asahina M ( 2016). Differential cellular control by cotyledon-derived phytohormones involved in graft reunion of Arabidopsis hypocotyls. Plant Cell Physiol 57, 2620-2631.
[34] Mazur E, Benková E, Friml J ( 2016). Vascular cambium regeneration and vessel formation in wounded inflorescence stems of Arabidopsis. Sci Rep 6, 33754.
[35] Melnyk CW, Gabel A, Hardcastle TJ, Robinson S, Miyashima S, Grosse I, Meyerowitz EM ( 2018). Transcriptome dynamics at Arabidopsis graft junctions reveal an intertissue recognition mechanism that activates vascular regeneration. Proc Natl Acad Sci USA 115, E2447-E2456.
[36] Melnyk CW, Meyerowitz EM ( 2015). Plant grafting. Curr Biol 25, R183-R188.
[37] Melnyk CW, Schuster C, Leyser O, Meyerowitz EM ( 2015). A developmental framework for graft formation and vascular reconnection in Arabidopsis thaliana. Curr Biol 25, 1306-1318.
[38] Mittler R, Vanderauwera S, Gollery M, Van Breusegem F ( 2004). Reactive oxygen gene network of plants. Trends Plant Sci 9, 490-498.
[39] Mo ZH, Feng G, Su WC, Liu ZZ, Peng FR ( 2018). Transcriptomic analysis provides insights into grafting union development in pecan ( Carya illinoinensis). Genes 9, 71.
[40] Moore R ( 1982). Graft formation in Kalanchoe blossfeldiana. J Exp Bot 33, 533-540.
[41] Moore R ( 1984). Graft formation in Solanum pennellii (Solanaceae). Plant Cell Rep 3, 172-175.
[42] Mousavi SAR, Chauvin A, Pascaud F, Kellenberger S, Farmer EE ( 2013). Glutamate receptor-like genes mediate leaf-to-leaf wound signaling. Nature 500, 422-426.
[43] Nanda AK, Melnyk CW ( 2018). The role of plant hormones during grafting. J Plant Res 131, 49-58.
[44] Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y ( 2009). A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat Chem Biol 5, 578-580.
[45] Orozco-Cardenas M, Ryan CA ( 1999). Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci USA 96, 6553-6557.
[46] Pitaksaringkarn W, Ishiguro S, Asahina M, Satoh S ( 2014a). ARF6 and ARF8 contribute to tissue reunion in incised Arabidopsis inflorescence stems. Plant Biotechnol 31, 49-53.
[47] Pitaksaringkarn W, Matsuoka K, Asahina M, Miura K, Sage-Ono K, Ono M, Yokoyama R, Nishitani K, Ishii T, Iwai H, Satoh S ( 2014b). XTH20 and XTH19 regulated by ANAC071 under auxin flow are involved in cell proliferation in incised Arabidopsis inflorescence stems. Plant J 80, 604-614.
[48] Rojo E, León J, Sánchez-Serrano JJ ( 1999). Cross-talk between wound signaling pathways determines local versus systemic gene expression in Arabidopsis thaliana. Plant J 20, 135-142.
[49] Ruan JJ, Zhou YX, Zhou ML, Yan J, Khurshid M, Weng WF, Cheng JP, Zhang KX ( 2019). Jasmonic acid signaling pathway in plants. Int J Mol Sci 20, 2479.
[50] Schilmiller AL, Howe GA ( 2005). Systemic signaling in the wound response. Curr Opin Plant Biol 8, 369-377.
[51] Sena G, Wang XN, Liu HY, Hofhuis H, Birnbaum KD ( 2009). Organ regeneration does not require a functional stem cell niche in plants. Nature 457, 1150-1153.
[52] Sheard LB, Tan X, Mao HB, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N ( 2010). Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468, 400-405.
[53] Smakowska-Luzan E, Mott GA, Parys K, Stegmann M, Howton TC, Layeghifard M, Neuhold J, Lehner A, Kong JX, Grünwald K, Weinberger N, Satbhai SB, Mayer D, Busch W, Madalinski M, Stolt-Bergner P, Provart NJ, Mukhtar MS, Zipfel C, Desveaux D, Guttman DS, Belkhadir Y ( 2018). An extracellular network of Arabidopsis leucine-rich repeat receptor kinases. Nature 553, 342-346.
[54] Stahl Y, Faulkner C ( 2016). Receptor complex mediated regulation of symplastic traffic. Trends Plant Sci 21, 450-459.
[55] Stahl Y, Wink RH, Ingram GC, Simon R ( 2009). A signaling module controlling the stem cell niche in Arabidopsis root meristems. Curr Biol 19, 909-914.
[56] Sugimoto K, Jiao YL, Meyerowitz EM ( 2010). Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev Cell 18, 463-471.
[57] Tilsner J, Amari K, Torrance L ( 2011). Plasmodesmata viewed as specialised membrane adhesion sites. Protoplasma 248, 39-60.
[58] Turnbull CGN, Booker JP, Leyser HMO ( 2002). Micrografting techniques for testing long-distance signaling in Arabidopsis. Plant J 32, 255-262.
[59] Vaddepalli P, Herrmann A, Fulton L, Oelschner M, Hillmer S, Stratil TF, Fastner A, Hammes UZ, Ott T, Robinson DG, Schneitz K ( 2014). The C2-domain protein QUIRKY and the receptor-like kinase STRUBBELIG localize to plasmodesmata and mediate tissue morphogenesis in Arabidopsis thaliana. Development 141, 4139-4148.
[60] Vu NT, Xu ZH, Kim YS, Kang HM, Kim IS ( 2014). Effect of nursery environmental condition and different cultivars on survival rate of grafted tomato seedling. Acta Hortic 1037, 765-770.
[61] Wang J, Jiang LB, Wu RL ( 2017). Plant grafting: how genetic exchange promotes vascular reconnection. New Phytol 214, 56-65.
[62] Wenzel CL, Schuetz M, Yu Q, Mattsson J ( 2007). Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana. Plant J 49, 387-398.
[63] Xie LL, Dong CJ, Shang QM ( 2019). Gene co-expression network analysis reveals pathways associated with graft healing by asymmetric profiling in tomato. BMC Plant Biol 19, 373.
[64] Yin H, Yan B, Sun J, Jia PF, Zhang ZJ, Yan XS, Chai J, Ren ZZ, Zheng GC, Liu H ( 2012). Graft-union development: a delicate process that involves cell-cell communication between scion and stock for local auxin accumulation. J Exp Bot 63, 4219-4232.
文章导航

/