360度群体遗传变异扫描——大豆泛基因组研究
收稿日期: 2020-05-26
录用日期: 2020-06-07
网络出版日期: 2020-06-17
基金资助
云南省基础研究计划杰出青年基金(2020)
A 360-degree Scanning of Population Genetic Variations—a Pan-genome Study of Soybean
Received date: 2020-05-26
Accepted date: 2020-06-07
Online published: 2020-06-17
大豆(Glycine max)是重要的油料和蛋白作物, 其丰富的遗传变异为生物学性状挖掘和育种改良提供了重要的资源基础。然而, 单个基因组信息无法全面揭示种质资源的遗传变异, 泛基因组研究为解决这一不足提供了新方案。近日, 中国科学院遗传与发育生物学研究所田志喜和梁承志研究团队从2 898份大豆种质中选取26份代表性材料, 并整合已有的3个基因组, 构建了包含野生和栽培大豆的泛基因组和图基因组(graph-based genome), 鉴定了整个群体的绝大多数结构变异数据集, 确定了大豆种质的核心、非必需和个体特异的基因集。利用这些数据系统地揭示了生育期位点E3的等位基因变异和基因融合事件、种皮颜色基因I的单体型和演化关系以及结构变异对铁离子转运基因表达和地区适应性选择的影响。该研究为作物基因组学研究提供了一个新的模式, 同时将加速推动大豆遗传变异的鉴定、性状解析和种质创新。
祝光涛,黄三文 . 360度群体遗传变异扫描——大豆泛基因组研究[J]. 植物学报, 2020 , 55(4) : 403 -406 . DOI: 10.11983/CBB20096
Soybean (Glycine max) is an important oil and protein crop. The abundancy of genetic diversity within the species provides an essential resource for traits exploration and breeding improvement. However, one reference genome is inadequate for discovering all genetic diversity of a species. Pan-genome provides a new solution to overcome this limitation. Recently, Prof. Zhixi Tian’ Group and Prof. Chengzhi Liang’ Group from the Institute of Genetics and Develop- mental Biology, Chinese Academy of Sciences, selected 26 representative soybeans from 2 898 sequenced accessions. Together with three previously published genomes, they constructed a pan-genome and a graph-based genome of wild and cultivated soybean germplasm. The core, dispensable, and private genes as well as all the vast majority of genetic variations within this species were identified and characterized. These data comprehensively revealed allelic variations and gene fusion event of maturity gene E3, the haploid types of seed coat color gene I and their evolutionary relationship, and structural variations affecting gene expression and regional adaptation selection of ferric ion transporters. This study provide a new mode for crop genomics, and will facilitate genetic variations identification, traits exploration and germplasm innovation of soybean.
Key words: soybean; pan-genome; graph-based genome; genetic variation; agronomic traits
[1] | Carter TE Jr, Nelson R, Sneller CH, Cui Z (2004). Soybeans: Improvement, Production and Uses, 3rd edn. Madison: American Society of Agronomy. pp. 97. |
[2] | Dai W, Huang Y, Wu L, Yu J (2009). Relationships between soil organic matter content (SOM) and pH in topsoil of zonal soils in China. Acta Pedol Sin 46, 851-860. |
[3] | Gao L, Gonda I, Sun H, Ma Q, Bao K, Tieman DM, Burzynski-Chang EA, Fish TL, Stromberg KA, Sacks GL, Thannhauser TW, Foolad MR, Diez MJ, Blanca J, Canizares J, Xu Y, van der Knaap E, Huang S, Klee HJ, Giovannoni JJ, Fei Z (2019). The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat Genet 51, 1044-1051. |
[4] | Golicz AA, Batley J, Edwards D (2016). Towards plant pangenomics. Plant Biotechnol J 14, 1099-1105. |
[5] | Huang X, Kurata N, Wei X, Wang ZX, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, Guo Y, Lu Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Zhang L, Wang Y, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan X, Xu Q, Dong G, Zhan Q, Li C, Fujiyama A, Toyoda A, Lu T, Feng Q, Qian Q, Li J, Han B (2012). A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497-501. |
[6] | Jiao WB, Accinelli GG, Hartwig B, Kiefer C, Baker D, Severing E, Willing EM, Piednoel M, Woetzel S, Madrid-Herrero E, Huettel B, Hümann U, Reinhard R, Koch MA, Swan D, Clavijo B, Coupland G, Schnee-berger K (2017). Improving and correcting the contiguity of long-read genome assemblies of three plant species using optical mapping and chromosome conformation capture data. Genome Res 27, 778-786. |
[7] | Li YH, Zhou G, Ma J, Jiang W, Jin LG, Zhang Z, Guo Y, Zhang J, Sui Y, Zheng L, Zhang SS, Zuo Q, Shi XH, Li YF, Zhang WK, Hu Y, Kong G, Hong HL, Tan B, Song J, Liu ZX, Wang Y, Ruan H, Yeung CKL, Liu J, Wang H, Zhang LJ, Guan RX, Wang KJ, Li WB, Chen SY, Chang RZ, Jiang Z, Jackson SA, Li R, Qiu LJ (2014). De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 32, 1045-1052. |
[8] | Liu Y, Du H, Li P, Shen Y, Peng H, Liu S, Zhou GA, Zhang H, Liu Z, Shi M, Huang X, Li Y, Zhang M, Wang Z, Zhu B, Han B, Liang C, Tian Z (2020). Pan-genome of wild and cultivated soybeans. Cell 182, 162-176. |
[9] | Lye ZN, Purugganan MD (2019). Copy number variation in domestication. Trends Plant Sci 24, 352-365. |
[10] | Morrissey J, Guerinot ML (2009). Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109, 4553-4567. |
[11] | Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010). Genome sequence of the palaeopolyploid soybean. Nature 463, 178-183. |
[12] | Tuteja JH, Clough SJ, Chan WC, Vodkin LO (2004). Tissue-specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in Glycine max. Plant Cell 16, 819-835. |
[13] | Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K (2009). Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182, 1251-1262. |
[14] | Xie M, Chung CY, Li MW, Wong FL, Wang X, Liu A, Wang Z, Leung AK, Wong TH, Tong SW, Xiao Z, Fan K, Ng MS, Qi X, Yang L, Deng T, He L, Chen L, Fu A, Ding Q, He J, Chung G, Isobe S, Tanabata T, Valliyodan B, Nguyen HT, Cannon SB, Foyer CH, Chan TF, Lam HM (2019). A reference-grade wild soybean genome. Nat Commun 10, 1216. |
[15] | Zhao Q, Feng Q, Lu H, Li Y, Wang A, Tian Q, Zhan Q, Lu Y, Zhang L, Huang T, Wang Y, Fan D, Zhao Y, Wang Z, Zhou C, Chen J, Zhu C, Li W, Weng Q, Xu Q, Wang ZX, Wei X, Han B, Huang X (2018). Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat Genet 50, 278-284. |
/
〈 | 〉 |