走出歌德的阴影: 迈向更加科学的植物系统学
收稿日期: 2019-05-21
录用日期: 2020-04-15
网络出版日期: 2020-04-15
基金资助
中国科学院战略性先导科技专项(B类)(XDB26000000);国家自然科学基金(41688103);国家自然科学基金(91514302);国家自然科学基金(41572046);陕西省归国留学博士科研启动基金(A279021830)
Stepping out of the Shadow of Goethe: for a More Scientific Plant Systematics
Received date: 2019-05-21
Accepted date: 2020-04-15
Online published: 2020-04-15
传统的植物学理论中, 被子植物雌蕊的基本单位心皮被认为是变态的叶(即大孢子叶)通过纵向对折和内卷演化而来。该理论造成了被子植物和裸子植物之间不可逾越的鸿沟。近年来提出的一统理论认为被子植物的心皮由长胚珠的枝和包裹这个枝的叶共同组成, 从而弥合了被子植物与裸子植物之间的鸿沟。最近, 当代植物学界两大权威人物Peter R. Crane和Peter K. Endress分别撰文, 发表了不同于传统理论的观点。Endress认为, 心皮由胚珠和叶性器官组成; 而Crane认为, 所有的胚珠都长在枝上。结合二者的结论, 不难得出“心皮实际上等同于一个长胚珠的枝加上一个叶”的论断。这在某种意义上等于认同了一统理论的观点。两位权威人物观点的转变预示着植物学理论将很快发生根本性的转变。该文向国内植物学同行通报这一最新动态, 以期让我国学者能够了解最新理论。
王鑫,刘仲健,刘文哲,廖文波,张鑫,刘忠,胡光万,郭学民,王亚玲 . 走出歌德的阴影: 迈向更加科学的植物系统学[J]. 植物学报, 2020 , 55(4) : 505 -512 . DOI: 10.11983/CBB19093
According to the Traditional Theory, a carpel (basic unit of angiosperm gynoecium) is derived from a modified leaf or megasporophyll through longitudinal folding and inward enrolling. Unfortunately, this theory introduces an unnegotiable gap between angiosperms and gymnosperms. Different from the Traditional Theory, the Unifying Theory provides a link bridging the gap mentioned above—an angiosperm carpel is derived from the synorganization between an ovule-bearing branch and an enclosing leaf. Recently two papers authored by leading botanists, Peter R. Crane and Peter K. Endress, respectively, expressed their opinions different from the Traditional Theory of angiosperm evolution. Endress stated that a carpel is result of synorganization between foliar part(s) plus ovule(s); and Crane stated that ovules/seeds are borne on the termini of branches. Combining the two, it is easy to infer that a carpel is equivalent to a foliar part plus an ovuliferous branch, a conclusion in line with the core conception of the Unifying Theory. The subtle changes in perspectives of these two leading botanists imply that there will be a major paradigm shift in botany soon. In order to make our botanists aware of the coming-soon changes in plant evolution theory, we summarize the latest progresses in relevant areas.
Key words: evolution; Goethe; angiosperms; plant systematics
[1] | 王鑫 (2018). 被子植物的曙光: 揭秘花的起源及陆地植物生殖器官的演化. 北京: 科学出版社. pp. 348. |
[2] | 王鑫, 刘仲健, 刘文哲, 张鑫, 郭学民, 胡光万, 张寿洲, 王亚玲, 廖文波 (2015). 突破当代植物系统学的困境. 科技导报 33(22), 97-105. |
[3] | Arber A (1938). Herbals, Their Origin and Evolution, A Chapter in the History of Botany 1470-1670. London: Cambridge University Press. pp. 358. |
[4] | Arber A (1946). Introduction to Goethe’s botany. Chron Bot 10, 63-87. |
[5] | Arber EAN, Parkin J (1907). On the origin of angiosperms. Bot J Linn Soc 38, 29-80. |
[6] | Bessey CE (1897). Phylogeny and taxonomy of the angiosperms. Bot Gaz 24, 145-178. |
[7] | Canright JE (1960). The comparative morphology and relationships of the Magnoliaceae. III. Carpels. Am J Bot 47, 145-155. |
[8] | Crane PR, Herendeen PS, Herrera F, Shi G (2018). Diversity and homologies of corystosperm seed-bearing structures from the Early Cretaceous of Mongolia and China. In: McElwain J, ed. 10th European Palaeobotany & Palynology Conference. Dublin: Trinity College Dublin. pp. 88. |
[9] | Cronquist A (1988). The Evolution and Classification of Flowering Plants. Bronx: New York Botanical Garden. pp. 555. |
[10] | Dilcher DL, Crane PR (1984). Archaeanthus: an early angiosperm from the Cenomanian of the Western Interior of North America. Ann Missour Bot Gard 71, 351-383. |
[11] | Doyle JA, Endress PK (2000). Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. Int J Plant Sci 161, S121-S153. |
[12] | Eames AJ (1926). The role of flower anatomy in the determination of angiosperm phylogeny. In: International Congress of Plant Sciences, Section of Morphology, Histology, and Paleobotany. New York:Ithaca. pp. 423-427. |
[13] | Eames AJ (1961). Morphology of the Angiosperms. New York: McGraw-Hill Book Company, Inc. pp. 518. |
[14] | Eames AJ, MacDaniels LH (1947). An Introduction to Plant Anatomy. New York: McGraw-Hill Book Company, Inc. pp. 427. |
[15] | Edwards D (2003). Embryophytic sporophytes in the Rhynie and Windy field cherts. Trans Royal Soc Edinb Earth Sci 94, 397-410. |
[16] | Endress PK (2005). Carpels in Brasenia (Cabombaceae) are completely ascidiate despite a long stigmatic crest. Ann Bot 96, 209-215. |
[17] | Endress PK (2019). The morphological relationship between carpels and ovules in angiosperms: pitfalls of morphological interpretation. Bot J Linn Soc 189, 201-227. |
[18] | Endress PK, Doyle JA (2009). Reconstructing the ancestral angiosperm flower and its initial specializations. Am J Bot 96, 22-66. |
[19] | Friis EM, Pedersen KR, Von Balthazar M, Grimm GW, Crane PR (2009). Monetianthus mirus gen. et sp. nov., a nymphaealean flower from the Early Cretaceous of Portugal. Int J Plant Sci 170, 1086-1101. |
[20] | Guo XM, Xiao X, Wang GX, Gao RF (2013). Vascular anatomy of kiwi fruit and its implications for the origin of carpels. Front Plant Sci 4, 391. |
[21] | Guo XM, Yu YY, Bai L, Gao RF (2017). Dianthus chinensis L: the sructural difference between vascular bundles in the placenta and ovary wall suggests their different origin. Front Plant Sci 8, 1986. |
[22] | Han G, Fu X, Liu ZJ, Wang X (2013). A new angiosperm genus from the Lower Cretaceous Yixian Formation, Western Liaoning, China. Acta Geol Sin (English Edition) 87, 916-925. |
[23] | Han G, Liu Z, Wang X (2017). A Dichocarpum-like angiosperm from the Early Cretaceous of China. Acta Geol Sin (English Edition) 90, 1-8. |
[24] | Hao S, Xue J (2013). The Early Devonian Posongchong Flora of Yunnan. Beijing: Science Press. pp. 366. |
[25] | Herendeen PS, Friis EM, Pedersen KR, Crane PR (2017). Palaeobotanical redux: revisiting the age of the angiosperms. Nat Plants 3, 17015. |
[26] | Hutchinson J (1926). The phylogeny of flowering plants. In: International Congress of Plant Sciences, Section of Morphology, Histology, and Paleobotany. New York: Ithaca. pp. 413-421. |
[27] | Hutchinson J (1968). Key to the Families of Flowering Plants of the World, 2nd edn. Oxford: Clarendon Press. pp. 117. |
[28] | Ji Q, Li H, Bowe M, Liu Y, Taylor DW (2004). Early Cretaceous Archaefructus eoflora sp. nov. with bisexual flowers from Beipiao, Western Liaoning, China. Acta Geol Sin (English Edition) 78, 883-892. |
[29] | Liu WZ, Hilu K, Wang YL (2014). From leaf and branch into a flower: Magnolia tells the story. Bot Stud 55, 28. |
[30] | Liu ZJ, Wang X (2017). Yuhania: a unique angiosperm from the Middle Jurassic of Inner Mongolia, China. Histor Biol 29, 431-441. |
[31] | Liu ZJ, Wang X (2018). A novel angiosperm from the Early Cretaceous and its implications for carpel-deriving. Acta Geol Sin (English Edition) 92, 1293-1298. |
[32] | Mathews S, Kramer EM (2012). The evolution of reproductive structures in seed plants: a re-examination based on insights from developmental genetics. New Phytol 194, 910-923. |
[33] | Mendes MM, Grimm GW, Pais J, Friis EM (2014). Fossil Kajanthus lusitanicus gen. et sp. nov. from Portugal: floral evidence for Early Cretaceous Lardizabalaceae (Ranunculales, basal eudicot). Grana 53, 283-301. |
[34] | Miao Y, Liu ZJ, Wang M, Wang X (2017). Fossil and living cycads say "No more megasporophylls". J Morphol Anat 1, 1000107. |
[35] | Parkin J (1925). The phylogenetic classification of flowering plants. Nature 115, 385-387. |
[36] | Roe JL, Nemhauser JL, Zambryski PC (1997). TOUSLED participates in apical tissue formation during gynoecium development in Arabidopsis. Plant Cell 9, 335-353. |
[37] | Rounsley SD, Ditta GS, Yanofsky MF (1995). Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7, 1259-1269. |
[38] | Shi G, Crane PR, Herendeen PS, Ichinnorov N, Takahashi M, Herrera F (2019). Diversity and homologies of corystosperm seedbearing structures from the Early Cretaceous of Mongolia. J Syst Palaeontol 17, 997-1029. |
[39] | Shi G, Leslie AB, Herendeen PS, Herrera F, Ichinnorov N, Takahashi M, Knopf P, Crane PR (2016). Early Cretaceous Umkomasia from Mongolia: implications for homology of corystosperm cupules. New Phytol 210, 1418-1429. |
[40] | Skinner DJ, Hill TA, Gasser CS (2004). Regulation of ovule development. Plant Cell 16, S32-S45. |
[41] | Sun G, Dilcher DL, Zheng S, Zhou Z (1998). In search of the first flower: a Jurassic angiosperm, Archaefructus, from Northeast China. Science 282, 1692-1695. |
[42] | Sun G, Ji Q, Dilcher DL, Zheng S, Nixon KC, Wang X (2002). Archaefructaceae, a new basal angiosperm family. Science 296, 899-904. |
[43] | Takhtajan A (1969). Flowering Plants, Origin and Dispersal. Edinburgh: Oliver & Boyd Ltd. pp. 301. |
[44] | Takhtajan A (1980). Outline of the classification of flowering plants (magnoliophyta). Bot Rev 46, 225-359. |
[45] | Takhtajan A (1997). Diversity and Classification of Flowering Plants. New York: Columbia University Press. pp. 643. |
[46] | von Goethe JWV (1790). Versuch die Metamorphose der Pflanzen zu erkl?ren. Gotha: Carl Wilhelm Ettinger. pp. 68. |
[47] | Wang X (2010). The Dawn Angiosperms: Uncovering the Origin of Flowering Plants. Heidelberg: Springer. pp. 236. |
[48] | Wang X (2018a). The Dawn Angiosperms: Uncovering the Origin of Flowering Plants, 2nd edn. Cham: Springer. pp. 407. |
[49] | Wang X (2018b). An era of errors: unveiling the truth of Archaeanthus and its implications for angiosperm systematics. ChinaXiv 201804. 201934. |
[50] | Wang X, Luo B (2013). Mechanical pressure, not genes, makes ovulate parts leaf-like in Cycas. Am J Plant Sci 4, 53-57. |
[51] | Wang X, Wang S (2010). Xingxueanthus: an enigmatic Jurassic seed plant and its implications for the origin of angiosperm. Acta Geol Sin (English Edition) 84, 47-55. |
[52] | Wang X, Zheng XT (2012). Reconsiderations on two characters of early angiosperm Archaefructus. Palaeoworld 21, 193-201. |
[53] | Wieland GR (1906). American Fossil Cycads. Washington: The Wilkens Sheiry Printing Co. pp. 295. |
[54] | Zhang X, Liu W, Wang X (2017). How the ovules get enclosed in magnoliaceous carpels. PLoS One 12, e0174955. |
[55] | Zhang X, Zhang Z, Zhao Z (2019). Floral ontogeny of Illicium lanceolatum (Schisandraceae) and its implications on carpel homology. Phytotaxa 416, 200-210. |
/
〈 | 〉 |