专题论坛

转录因子调控植物萜类化合物生物合成研究进展

展开
  • 1中国科学院植物研究所, 北方资源植物重点实验室/北京植物园, 北京 100093
    2中国科学院大学, 北京 100049

收稿日期: 2019-09-19

  录用日期: 2020-02-17

  网络出版日期: 2020-02-17

基金资助

中国科学院A类战略性先导科技专项(XDA23080603);国家自然科学基金(31701956)

Advances in Transcription Factors Regulating Plant Terpenoids Biosynthesis

Expand
  • 1Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    2University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2019-09-19

  Accepted date: 2020-02-17

  Online published: 2020-02-17

摘要

萜类化合物是植物次生代谢物中结构和数量最多的一类化合物, 它们在植物体内以及植物与环境和其它生命体的相互作用中发挥重要作用。转录因子通过调控代谢通路中基因的转录起始来调节次生代谢物质的产量。目前, 研究发现参与萜类合成的转录因子家族主要有6个, 包括AP2/ERF、bHLH、MYB、NAC、WRKY和bZIP。该文主要对其家族的结构特点、调控模式以及研究进展进行综述, 以期进一步丰富萜烯合成的网络调控, 为植物萜类相关的分子育种、优质栽培和病虫害生物防治等提供新的思路与方法。

本文引用格式

董燕梅, 张文颖, 凌正一, 李靖锐, 白红彤, 李慧, 石雷 . 转录因子调控植物萜类化合物生物合成研究进展[J]. 植物学报, 2020 , 55(3) : 340 -350 . DOI: 10.11983/CBB19186

Abstract

Terpenoids are the most abundant structural and quantitative compounds in plant secondary metabolites, and they play an important role in the interaction of plants with the external environment. Transcription factors have the function of regulating the expression level of genes in the secondary metabolic pathway and regulating the production of secondary metabolites. In the last decades, there are six major transcription factor families involved in the terpenoids biosynthesis (AP2/ERF, bHLH, MYB, NAC, WRKY and bZIP). In this study, we reviewed the structure characteristics, regulatory mode, and research advances of several important transcription factor families in the plant terpenoids biosynthesis, and hope to further enrich the regulatory network of terpenoids synthesis, and provide a reference for molecular breeding, high-quality cultivation and biological control in relevant to terpenoid biosynthesis.

参考文献

[1] 郭倩倩, 周文彬 (2019). 植物响应联合胁迫机制的研究进展. 植物学报 54, 662-673.
[2] 李慧, 白红彤, 王晓, 姜闯道, 张金政, 石雷 (2011). 椒样薄荷、薄荷和苏格兰留兰香精油与抗生素的协同抑菌功能. 植物学报 46, 37-43.
[3] 李笑, 成玉富, 杨旭 (2017). 茄科植物WRKY转录因子的研究进展. 园艺学报 44, 170-178.
[4] 李欣, 李影, 曲子越, 孙璐, 王思瑶, 詹亚光, 尹静 (2017). bHLH转录因子在茉莉酸信号诱导植物次生产物合成中的作用及分子机制. 植物生理学报 53, 1-8.
[5] 刘强, 张贵友, 陈受宜 (2000). 植物转录因子的结构与调控作用. 科学通报 45, 1465-1474.
[6] 牟玉兰, 闫浩, 龚黎黎 (2018). 萜类化合物的研究概况. 化工管理 (11), 12-13.
[7] 苏文炳, 蒋园园, 白昀鹭, 甘小清, 刘月学, 林顺权 (2019). 转录因子调控植物萜类化合物生物合成研究进展. 农业生物技术学报 27, 919-926.
[8] 孙俊聪, 侯柄竹, 陈晓亚, 唐克轩, 黎胜红, 尚轶, 崔光红, 段礼新, 黄三文, 漆小泉 (2019). 新中国成立70年来我国植物代谢领域的重要进展. 中国科学: 生命科学 49, 1213-1226.
[9] 孙璐 (2018). 白桦BpMYB21和BpMYB61基因的克隆、表达特性及功能研究. 硕士论文. 哈尔滨: 东北林业大学. pp. 4-6, 71-72.
[10] 唐彪, 胡增辉, 冷平生 (2018). 不同花期‘西伯利亚’百合花瓣单萜合成途径转录组分析. 植物科学学报 36, 252-263.
[11] 魏海超, 刘媛, 豆明珠, 杨素欣, 冯献忠 (2015). 大豆AP2/ERF基因家族的分子进化分析. 植物生理学报 51, 1706-1718.
[12] 岳跃冲, 范燕萍 (2011). 植物萜类合成酶及其代谢调控的研究进展. 园艺学报 38, 379-388.
[13] 张慧敏, 张雷, 马永硕, 尚轶, 王深浩, 杨清, 黄三文 (2014). 调控黄瓜苦味基因Bi的AP2/ERF家族转录因子. 园艺学报 41, 672-680.
[14] 张凯伦, 罗祖良, 郭玉华, 石宏武, 马小军 (2017). bHLH转录因子调控药用植物萜类化合物生物合成的研究进展. 中国现代中药 19, 142-147.
[15] 张全琪, 朱家红, 倪燕妹, 张治礼 (2011). 植物bHLH转录因子的结构特点及其生物学功能. 热带亚热带植物学报 19, 84-90.
[16] 张雪松, 裴建军, 赵林果, 汤锋, 房仙颖, 解静聪 (2016). 不同品种桂花转录组分析及桂花精油成分差异的初步探讨. 天然产物研究与开发 28, 529-535.
[17] 赵英 (2019). 丹参SmMYB36基因对萜类和苯丙烷代谢途径调控的研究. 硕士论文. 杨凌: 西北农林科技大学. pp. 1-6, 53-54.
[18] Abbas F, Ke YG, Yu RC, Yue YC, Amanullah S, Jahangir MM, Fan YR (2017). Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta 246, 803-816.
[19] Albert NW, Lewis DH, Zhang HB, Schwinn KE, Jameson PE, Davies KM (2011). Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. Plant J 65, 771-784.
[20] Ben-Yehoshua S, Rodov V, Nafussi B, Feng XQ, Yen J, Koltai T, Nelkenbaum U (2008). Involvement of limonene hydroperoxides formed after oil gland injury in the induction of defense response against Penicillium digitatum in lemon fruit. J Agric Food Chem 56, 1889-1895.
[21] Brandt W, Br?uer L, Günnewich N, Kufka J, Rausch F, Schulze D, Schulze E, Weber R, Zakharova S, Wessjohann L (2009). Molecular and structural basis of metabolic diversity mediated by prenyldiphosphate converting enzymes. Phytochemistry 70, 1758-1775.
[22] Caputi L, Aprea E (2011). Use of terpenoids as natural flavouring compounds in food industry. Recent Pat Food Nutr Agric 3, 9-16.
[23] Chappell J (2003). Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu Rev Plant Physiol Plant Mol Biol 46, 521-547.
[24] Chuang YC, Hung YC, Tsai WC, Chen WH, Chen HH (2018). PbbHLH4 regulates floral monoterpene biosynthesis in Phalaenopsis orchids. J Exp Bot 69, 4363-4377.
[25] De Geyter N, Gholami A, Goormachtig S, Goossens A (2012). Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci 17, 349-359.
[26] Ding K, Pei TL, Bai ZQ, Jia YY, Ma PD, Liang ZS (2017). SmMYB36, a novel R2R3-MYB transcription factor, enhances tanshinone accumulation and decreases phenolic acid content in Salvia miltiorrhiza hairy roots. Sci Rep 7, 5104.
[27] Duval M, Hsieh TF, Kim SY, Thomas TL (2002). Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol Biol 50, 237-248.
[28] Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000). The WRKY superfamily of plant transcription factors. Trends Plant Sci 5, 199-206.
[29] Gershenzon J, Dudareva N (2007). The function of terpene natural products in the natural world. Nat Chem Biol 3, 408-414.
[30] Hong GJ, Xue XY, Mao YB, Wang LJ, Chen XY (2012). Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell 24, 2635-2648.
[31] Hurst HC (1994). Transcription factors 1: bZIP proteins. Protein Profile 1, 123-168.
[32] Ji YP, Xiao JW, Shen YL, Ma D, Li ZQ, Pu GB, Li X, Huang LL, Liu BY, Ye HC, Wang H (2014). Cloning and characterization of AabHLH1, a bHLH transcription factor that positively regulates artemisinin biosynthesis in Artemisia annua. Plant Cell Physiol 55, 1592-1604.
[33] Jiang WM, Fu XQ, Pan QF, Tang YL, Shen Q, Lv ZY, Yan TX, Shi P, Li L, Zhang LD, Wang GF, Sun XF, Tang KX (2016). Overexpression of AaWRKY1 leads to an enhanced content of artemisinin in Artemisia annua. BioMed Res Int 2016,7314971.
[34] Li H, Li JR, Dong YM, Hao HP, Ling ZY, Bai HT, Wang HF, Cui HX, Shi L (2019). Time-series transcriptome provides insights into the gene regulation network involved in the volatile terpenoid metabolism during the flower development of lavender. BMC Plant Biol 19, 313.
[35] Li X, Xu YY, Shen SL, Yin XR, Klee H, Zhang B, Chen KS (2017). Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synthesis of E-geraniol in sweet orange fruit. J Exp Bot 68, 4929-4938.
[36] Lu X, Zhang L, Zhang FY, Jiang WM, Shen Q, Zhang LD, Lv ZY, Wang GF, Tang KX (2013). AaORA, a trichome- specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytol 198, 1191-1202.
[37] Lv ZY, Wang S, Zhang FY, Chen LX, Hao XL, Pan QF, Fu XQ, Li L, Sun XF, Tang KX (2016). Overexpression of a novel NAC domain-containing transcription factor gene (AaNAC1) enhances the content of artemisinin and increases tolerance to drought and Botrytis cinerea in Artemisia annua. Plant Cell Physiol 57, 1961-1971.
[38] Mannen K, Matsumoto T, Takahashi S, Yamaguchi Y, Tsukagoshi M, Sano R, Suzuki H, Sakurai N, Shibata D, Koyama T, Nakayama T (2014). Coordinated transcriptional regulation of isopentenyl diphosphate biosynthetic pathway enzymes in plastids by phytochrome-interacting factor 5. Biochem Biophys Res Commun 443, 768-774.
[39] Matías-Hernández L, Jiang WM, Yang K, Tang KX, Brodelius PE, Pelaz S (2017). AaMYB1 and its orthologue AtMYB61 affect terpene metabolism and trichome development in Artemisia annua and Arabidopsis thaliana. Plant J 90, 520-534.
[40] Miyamoto K, Matsumoto T, Okada A, Komiyama K, Chujo T, Yoshikawa H, Nojiri H, Yamane H, Okada K (2014). Identification of target genes of the bZIP transcription factor OsTGAP1, whose overexpression causes elicitor-induced hyperaccumulation of diterpenoid phytoalexins in rice cells. PLoS One 9, e105823.
[41] Miyamoto K, Nishizawa Y, Minami E, Nojiri H, Yamane H, Okada K (2015). Overexpression of the bZIP transcription factor OsbZIP79 suppresses the production of diterpenoid phytoalexin in rice cells. J Plant Physiol 173, 19-27.
[42] Moses T, Pollier J, Thevelein JM, Goossens A (2013). Bioengineering of plant (tri)terpenoids: from metabolic engineering of plants to synthetic biology in vivo and in vitro. New Phytol 200, 27-43.
[43] Nieuwenhuizen NJ, Chen XY, Wang MY, Matich AJ, Perez RL, Allan AC, Green SA, Atkinson RG (2015). Natural variation in monoterpene synthesis in kiwifruit: transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-Like transcription factors. Plant Physiol 167, 1243-1258.
[44] Okada A, Okada K, Miyamoto K, Koga J, Shibuya N, Nojiri H, Yamane H (2009). OsTGAP1, a bZIP transcription factor, coordinately regulates the inductive production of diterpenoid phytoalexins in rice. J Biol Chem 284, 26510-26518.
[45] Olsen AN, Ernst HA, Leggio LL, Skriver K (2005). NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10, 79-87.
[46] Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S (2003). Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10, 239-247.
[47] Paz-Ares J, Ghosal D, Wienand U, Peterson PA, Saedler H (1987). The regulatory c1 locus of Zea mays encodes a protein with homology to MYB proto-oncogene products and with structural similarities to transcriptional activators. EMBO J 6, 3553-3558.
[48] Qi TC, Huang H, Wu DW, Yan JB, Qi YJ, Song SS, Xie DX (2014). Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy. Plant Cell 26, 1118-1133.
[49] Reddy VA, Wang Q, Dhar N, Kumar N, Venkatesh PN, Rajan C, Panicker D, Sridhar V, Mao HZ, Sarojam R (2017). Spearmint R2R3-MYB transcription factor MsMYB negatively regulates monoterpene production and suppresses the expression of geranyl diphosphate synthase large subunit (MsGPPS. LSU). Plant Biotechnol J 15, 1105-1119.
[50] Reeves PH, Ellis CM, Ploense SE, Wu MF, Yadav V, Tholl D, Chételat A, Haupt I, Kennerley BJ, Hodgens C, Farmer EE, Nagpal P, Reed JW (2012). A regulatory network for coordinated flower maturation. PLoS Genet 8, e1002506.
[51] Roberts SC (2007). Production and engineering of terpenoids in plant cell culture. Nat Chem Biol 3, 387-395.
[52] Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, Boken AK, Langum TJ, Smidt L, Boomsma DD, Emme NJ, Chen XF, Finer JJ, Shen QJ, Rushton PJ (2012). WRKY transcription factors: key components in abscisic acid signaling. Plant Biotechnol J 10, 2-11.
[53] Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010). WRKY transcription factors. Trends Plant Sci 15, 247-258.
[54] Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290, 998-1009.
[55] Schwab W, Davidovich-Rikanati R, Lewinsohn E (2008). Biosynthesis of plant-derived flavor compounds. Plant J 54, 712-732.
[56] Shang Y, Ma YS, Zhou Y, Zhang HM, Duan LX, Chen HM, Zeng JG, Zhou Q, Wang SH, Gu WJ, Liu M, Ren JW, Gu XF, Zhang SP, Wang Y, Yasukawa K, Bouwmeester HJ, Qi XQ, Zhang ZH, Lucas WJ, Huang SW (2014). Biosynthesis, regulation, and domestication of bitterness in cucumber. Science 346, 1084-1088.
[57] Shen SL, Yin XR, Zhang B, Xie XL, Jiang Q, Grierson D, Chen KS (2016). CitAP2.10 activation of the terpene synthase CsTPS1 is associated with the synthesis of (+)-valencene in ‘Newhall’ orange. J Exp Bot 67, 4105-4115.
[58] Shi M, Zhou W, Zhang JL, Huang SX, Wang HZ, Kai GY (2016). Methyl jasmonate induction of tanshinone biosynthesis in Salvia miltiorrhiza hairy roots is mediated by JASMONATE ZIM-DOMAIN repressor proteins. Sci Rep 6, 20919.
[59] Spyropoulou EA, Haring MA, Schuurink RC (2014a). Expression of terpenoids 1, a glandular trichome-specific transcription factor from tomato that activates the terpene synthase 5 promoter. Plant Mol Biol 84, 345-357.
[60] Spyropoulou EA, Haring MA, Schuurink RC (2014b). RNA sequencing on Solanum lycopersicum trichomes identifies transcription factors that activate terpene synthase promoters. BMC Genomics 15, 402.
[61] Suttipanta N, Pattanaik S, Kulshrestha M, Patra B, Singh SK, Yuan L (2011). The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 157, 2081-2093.
[62] Tamura K, Yoshida K, Hiraoka Y, Sakaguchi D, Chikugo A, Mochida K, Kojoma M, Mitsuda N, Saito K, Muranaka T, Seki H (2018). The basic helix-loop-helix transcription factor GubHLH3 positively regulates soyasaponin biosynthetic genes in Glycyrrhiza uralensis. Plant Cell Physiol 59, 783-796.
[63] Tan HX, Xiao L, Gao SH, Li Q, Chen JF, Xiao Y, Ji Q, Chen RB, Chen WS, Zhang L (2015). TRICHOME and ARTEMISININ REGULATOR 1 is required for trichome development and artemisinin biosynthesis in Artemisia annua. Mol Plant 8, 1396-1411.
[64] Tang YL, Li L, Yan TX, Fu XQ, Shi P, Shen Q, Sun XF, Tang KX (2018). AaEIN3 mediates the downregulation of artemisinin biosynthesis by ethylene signaling through promoting leaf senescence in Artemisia annua. Front Plant Sci 9, 413.
[65] Vranová E, Coman D, Gruissem W (2012). Structure and dynamics of the isoprenoid pathway network. Mol Plant 5, 318-333.
[66] Wang Q, Reddy VA, Panicker D, Mao HZ, Kumar N, Venkatesh PN, Chua NH, Sarojam R (2016). Metabolic engineering of terpene biosynthesis in plants using a trichome-specific transcription factor MsYABBY5 from spearmint (Mentha spicata). Plant Biotechnol J 14, 1619-1632.
[67] Wei CL, Yang H, Wang SB, Zhao J, Liu C, Gao LP, Xia EH, Lu Y, Tai YL, She GB, Sun J, Cao HS, Tong W, Gao Q, Li YY, Deng WW, Jiang XL, Wang WZ, Chen Q, Zhang SH, Li HJ, Wu JL, Wang P, Li PH, Shi CY, Zheng FY, Jian JB, Huang B, Shan D, Shi MM, Fang CB, Yue Y, Li FD, Li DX, Wei S, Han B, Jiang CJ, Yin Y, Xia T, Zhang ZZ, Bennetzen JL, Zhao SC, Wan XC (2018). Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proc Natl Acad Sci USA 115, E4151-E4158.
[68] Xu YH, Wang JW, Wang S, Wang JY, Chen XY (2004). Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-δ-cadinene synthase-A1. Plant Physiol 135, 507-515.
[69] Xu YY, Zhu CQ, Xu CJ, Sun J, Grierson D, Zhang B, Chen KS (2019). Integration of metabolite profiling and transcriptome analysis reveals genes related to volatile terpenoid metabolism in finger citron (C. medica var. sarcodactylis). Molecules 24, 2564.
[70] Yamamura C, Mizutani E, Okada K, Nakagawa H, Fukushima S, Tanaka A, Maeda S, Kamakura T, Yamane H, Takatsuji H, Mori M (2015). Diterpenoid phytoalexin factor, a bHLH transcription factor, plays a central role in the biosynthesis of diterpenoid phytoalexins in rice. Plant J 84, 1100-1113.
[71] Yamane H (2013). Biosynthesis of phytoalexins and regulatory mechanisms of it in rice. Biosci Biotechnol Biochem 77, 1141-1148.
[72] Yin J, Li X, Zhan YG, Li Y, Qu ZY, Sun L, Wang SY, Yang J, Xiao JL (2017). Cloning and expression of BpMYC4 and BpbHLH9 genes and the role of BpbHLH9 in triterpenoid synthesis in birch. BMC Plant Biol 17, 214.
[73] Yu ZX, Li JX, Yang CQ, Hu WL, Wang LJ, Chen XY (2012). Jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Mol Plant 5, 353-365.
[74] Zhang FY, Fu XQ, Lv ZY, Lu X, Shen Q, Zhang L, Zhu MM, Wang GF, Sun XF, Liao ZH, Tang KX (2015). A basic leucine zipper transcription factor, AabZIP1, connects abscisic acid signaling with artemisinin biosynthesis in Artemisia annua. Mol Plant 8, 163-175.
[75] Zhang FY, Xiang LE, Yu Q, Zhang HX, Zhang TX, Zeng JL, Geng C, Li L, Fu XQ, Shen Q, Yang CX, Lan XZ, Chen M, Tang KX, Liao ZH (2018). ARTEMISININ BIOSYNTHESIS PROMOTING KINASE 1 positively regulates artemisinin biosynthesis through phosphorylating AabZIP1. J Exp Bot 69, 1109-1123.
[76] Zhang JX, Zhou LB, Zheng XY, Zhang JJ, Yang L, Tan RH, Zhao SJ (2017). Overexpression of SmMYB9b enhances tanshinone concentration in Salvia miltiorrhiza hairy roots. Plant Cell Rep 36, 1297-1309.
[77] Zhang YJ, Wang LJ (2005). The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol 5, 1.
[78] Zhou F, Sun TH, Zhao L, Pan XW, Lu S (2015). The bZIP transcription factor HY5 interacts with the promoter of the monoterpene synthase gene QH6 in modulating its rhythmic expression. Front Plant Sci 6, 304.
[79] Zhou Y, Ma YS, Zeng JG, Duan LX, Xue XF, Wang HS, Lin T, Liu ZQ, Zeng KW, Zhong Y, Zhang S, Hu Q, Liu M, Zhang HM, Reed J, Moses T, Liu XY, Huang P, Qing ZX, Liu XB, Tu PF, Kuang HH, Zhang ZH, Osbourn A, Ro DK, Shang Y, Huang SW (2016). Convergence and divergence of bitterness biosynthesis and regulation in Cucurbitaceae. Nat Plants 2, 16183.
[80] Zhou YY, Zhou X, Li Q, Chen JF, Xiao Y, Zhang L, Chen WS (2017). Molecular cloning, bioinformatics analysis, and transcriptional profiling of JAZ1 and JAZ2 from Salvia miltiorrhiza. Biotechnol Appl Biochem 64, 27-34.
[81] Zhu MK, Chen GP, Zhou S, Tu Y, Wang Y, Dong TT, Hu ZL (2014). A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant Cell Physiol 55, 119-135.
[82] Zhuang J, Peng RH, Cheng ZM, Zhang J, Cai B, Zhang Z, Gao F, Zhu B, Fu XY, Jin XF, Chen JM, Qiao YS, Xiong AS, Yao QH (2009). Genome-wide analysis of the putative ap2/erf family genes in Vitis vinifera. Sci Hortic 123, 73-81.
[83] Zvi MMB, Shklarman E, Masci T, Kalev H, Debener T, Shafir S, Ovadis M, Vainstein A (2012). PAP1 transcription factor enhances production of phenylpropanoid and terpenoid scent compounds in rose flowers. New Phytol 195, 335-345.
文章导航

/