研究报告

转昆虫抗冻蛋白基因增强甘薯抗冻能力

展开
  • 1西昌学院农业科学学院, 四川马铃薯高等学校重点实验室, 凉山 615013
    2四川大学生命科学学院, 四川省分子生物学及生物技术重点实验室, 成都 610064

收稿日期: 2019-07-05

  录用日期: 2019-09-24

  网络出版日期: 2019-10-09

基金资助

国家科技支撑计划(2007BAD78B03);四川省“十一五”重点科技攻关项目(No.07SG111-003-1)

Transformation of Insect Derived Antifreeze Gene into Sweet Potato (Ipomoea batatas) and Enhanced Its Freeze-tolerance

Expand
  • 1Sichuan Key Laboratory of Potatoes, College of Agriculture Science, Xichang College, Liangshan 615013, China
    2Sichuan Key Laboratory of Molecular Biology & Biotechnology, College of Life Science, Sichuan University, Chengdu 610064, China

Received date: 2019-07-05

  Accepted date: 2019-09-24

  Online published: 2019-10-09

摘要

为明确昆虫抗冻蛋白基因转入甘薯(Ipomoea batatas)后是否能提升其抗冻能力, 进而为培育甘薯抗冻育种材料奠定基础, 将黄粉虫(Tenebrio molitor)抗冻蛋白基因TmAFP导入植物基因表达质粒, 经农杆菌介导的遗传转化获得抗冻甘薯新材料。以甘薯品种Huachano为受体材料建立甘薯植株高效再生体系, 并采用不同成分的体细胞胚成熟培养基培养胚性悬浮细胞。胚性愈伤组织对除草剂的敏感性测试结果表明, 转基因阳性植株筛选的最适培养基为MS+0.2 mg·L -12,4-D+0.8 mg·L -1GAP+100 mg·L -1Carb。将表达质粒分别转化Huachano后共获得7个胚性愈伤团并最终获得42株再生抗性植株, 其中转pSUIBEV3-AFP有23个株系, 转pCAMBIA-AFP有19个株系, 经PCR、Southern杂交和RT-PCR检测后证实TmAFP基因已整合至甘薯基因组中并获得表达。将转基因甘薯及对照植株在-1°C下处理15小时后转移至室温, 结果表明, 转基因甘薯植株的抗冻能力显著提升。

本文引用格式

赖先军,张义正,古英洪,颜朗 . 转昆虫抗冻蛋白基因增强甘薯抗冻能力[J]. 植物学报, 2020 , 55(1) : 9 -20 . DOI: 10.11983/CBB19133

Abstract

To explore whether the gene encoding antifreeze protein from insect can enhance the freezing tolerance of sweet potato through gene transformation, and to prepare freeze-tolerance materials for breeding purposes, we constructed a plant gene expression vector harboring an antifreeze gene TmAFP from yellow mealworms (Tenebrio molitor) and obtained transgenic freeze-tolerance sweet potato lines using Agrobacterium-mediated transformation method. A high-frequency regeneration system of sweet potato was established using the variety Huachano as the recipient material, and the embryogenic suspension cells were cultured in the somatic embryo maturation medium. The sensitivity test of embryogenic cells to herbicides indicated that the combination of MS+0.2 mg·L -12,4-D+0.8 mg·L -1GAP+100 mg·L -1Carb is the most effective medium for screening the transgenic positive plants. Seven embryogenic calli were obtained and 42 resistant seedlings were regenerated, among which 23 harbored pSUIBEV3-AFP and 19 had pCAMBIA-AFP. All resistant seedlings were examined by PCR, Southern hybridization and RT-PCR, and the results showed that the TmAFP gene was integrated into the plant genome and expressed. The transgenic and non-transgenic plants were treated at -1°C for 15 hours, and then transferred to room temperature. The results demonstrated that the freeze-tolerance of the transgenic plants was greatly improved.

参考文献

[1] 蔺忠龙, 李维薇, 白现广, 吕广磊, 程在全 (2009). 植物抗冻基因最新研究进展. 北方园艺 ( 1), 119-123.
[2] 刘忠渊, 王芸, 吕国栋, 王贤磊, 张富春, 马纪 (2006). Tenebriomolitor抗冻蛋白基因家族cDNA片段的克隆、序列分析及原核表达. 遗传 28, 1532-1540.
[3] 马代夫, 李洪民, 李秀英, 谢逸平, 李强 (2005). 甘薯育种与甘薯产业发展. 见: 全国甘薯育种与产业化学术研讨会. 成都: 中国作物学会. pp. 3-10.
[4] 阮龙, 高正良, 陈义红, 张玮, 张云华, 吴跃进, 邵希文 (2010). 干旱耐逆基因(HS1)转化甘薯获得转基因植株. 激光生物学报 19, 552-556.
[5] 王欣, 过晓明, 李强, 唐忠厚, 郭尚洙, 马代夫 (2011). 转逆境诱导型启动子SWPA2驱动Cu/ZnSOD和APX基因甘薯(Ipomoea batatas (L.) Lam.)耐盐性. 分子植物育种 9, 754-759.
[6] 王艳, 马纪, 黄薇, 邱立明, 叶锋, 张富春 (2009). 叶绿体型转昆虫抗冻蛋白基因烟草的耐寒性. 作物学报 35, 1253-1260.
[7] 臧宁, 翟红, 王玉萍, 于波, 何绍贞, 刘庆昌 (2007). 表达bar基因的抗除草剂转基因甘薯的获得. 分子植物育种 5, 475-479.
[8] 翟红, 何绍贞, 赵宁, 刘庆昌 (2017). 甘薯生物技术育种研究进展. 江苏师范大学学报(自然科学版) 35, 25-29.
[9] 张振华, 陈介南, 卢孟柱, 章怀云, 刘伯斌 (2012). 胡萝卜与黄粉虫抗冻融合基因在拟南芥中的表达与抗冻性分析. 中国农学通报 28(31), 146-152.
[10] 瓜谷郁三( 谢国生, 李合生译 ) (2004). 植物逆境生物化学及分子生物学: 着重热带薯类. 北京: 中国农业出版社. pp. 202-204.
[11] Cutler AJ, Saleem M, Kendall E, Gusta LV, Georges F, Fletcher GL (1989). Winter flounder antifreeze protein improves the cold hardiness of plant tissues. J Plant Physiol 135, 351-354.
[12] Fan WJ, Zhang M, Zhang HX, Zhang P (2012). Improved tolerance to various abiotic stresses in transgenic sweet potato ( Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS One 7, e37344.
[13] Liu DG, He SZ, Song XJ, Zhai H, Liu N, Zhang DD, Ren ZT, Liu QC (2015). IbSIMT1, a novel salt-induced methyltransferase gene from Ipomoea batatas, is involved in salt tolerance. Plant Cell Tissue Organ Cult 120, 701-715.
[14] Liu DG, He SZ, Zhai H, Wang LJ, Zhao Y, Wang B, Li RJ, Liu QC (2014a). Overexpression of IbP5CR enhances salt tolerance in transgenic sweetpotato. Plant Cell Tissue Organ Cult 117, 1-16.
[15] Liu DG, Wang LJ, Zhai H, Song XJ, He SZ, Liu QC (2014b). A novel α/β-hydrolase gene IbMas enhances salt tolerance in transgenic sweetpotato. PLoS One 9, e115128.
[16] Liu QC (2011). Sweet potato omics and biotechnology in China. Plant Omics 4, 295-301.
[17] Mwanga ROM, Andrade MI, Carey EE, Low JW, Yencho GC, Grüneberg WJ (2017). Sweetpotato (Ipomoea batatas L.). In: Campos H, Caligari PDS, eds. Genetic Improvement of Tropical Crops. Cham: Springer. pp. 181-218.
[18] Nada H, Furukawa Y (2011). Growth inhibition at the ice prismatic plane induced by a spruce budworm antifreeze protein: a molecular dynamics simulation study. Phys Chem Chem Phys 13, 19936-19942.
[19] Pearce RS (1999). Molecular analysis of acclimation to cold. Plant Growth Regul 29, 47-76.
[20] Perl A, Perl-Treves R, Galili S, Aviv D, Shalgi E, Malkin S, Galun E (1993). Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu, Zn superoxide dismutases. Theor Appl Genet 85, 568-576.
[21] Ramya L, Ramakrishnan V (2016). Interaction of tenebrio molitor antifreeze protein with ice crystal: insights from molecular dynamics simulations. Mol Inform 35, 268-277.
[22] Wang B, Zhai H, He SZ, Zhang H, Ren ZT, Zhang DD, Liu QC (2016). A vacuolar Na+/H+ antiporter gene, IbNHX2, enhances salt and drought tolerance in transgenic sweetpotato. Sci Hortic 201, 153-166.
[23] Wang C, Pakhomova S, Newcomer ME, Christner BC, Luo BH (2017). Structural basis of antifreeze activity of a bacterial multi-domain antifreeze protein. PLoS One 12, e0187169.
[24] Wang LJ, He SZ, Zhai H, Liu DG, Wang YN, Liu QC (2013). Molecular cloning and functional characterization of a salt tolerance-associated gene IbNFU1 from sweetpotato. J Integr Agric 12, 27-35.
[25] Wang WX, Vinocur B, Altman A (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218, 1-14.
[26] Yang Y, Guan S, Zhai H, He S, Liu Q (2009). Development and evaluation of a storage root-bearing sweetpotato somatic hybrid between Ipomoea batatas(L.) Lam. and I. triloba L. Plant Cell Tissue Organ Cult 99, 83-89.
[27] Yue CW, Zhang YZ (2009). Cloning and expression of Tenebrio molitor antifreeze protein in Escherichia coli. Mol Biol Rep 36, 529-536.
[28] Zhai H, Wang FB, Si ZZ, Huo JX, Xing L, An YY, He SZ, Liu QC (2016). A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweet potato. Plant Biotechnol J 14, 592-602.
[29] Zhang JH, Davies WJ (1987). Increased synthesis of ABA in partially dehydrated root tips and ABA transport from roots to leaves. J Exp Bot 38, 2015-2023.
文章导航

/