[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]利用锌特异性探针HL1示踪植物细胞外Zn2+的分布
收稿日期: 2016-10-10
录用日期: 2017-03-07
网络出版日期: 2017-07-10
基金资助
内蒙古自治区科技重大专项(No.内财政[2014]2020)
Fluorescence Imaging of the Extracellular Zinc Distribution in Plants by Using a Highly Specific Fluorescent Probe
Received date: 2016-10-10
Accepted date: 2017-03-07
Online published: 2017-07-10
以拟南芥(Arabidopsis thaliana)和谷子(Setaria italic)为研究材料, 利用锌特异性探针HL1, 使用荧光分光光度仪、等温滴定热量测定仪(ITC200)和倒置荧光显微镜等仪器探究了该化学探针的特性以及植物细胞外游离Zn2+的分布。结果表明, 当HL1与不同元素溶液混合时, 只与Zn2+特异性结合, 在紫外光(UV)激发下, 发射出波长为500 nm的蓝色荧光; 生成物的平衡解离常数KD=7.02×10-4 mol·L-1, 具有很好的稳定性。拟南芥叶片中的Zn2+分布于细胞间隙及叶表皮毛的外周和表层, 且叶表皮毛的荧光强度具有明显的浓度依赖性; 谷子叶片中的Zn2+分布在细胞间隙以及维管组织。拟南芥根中的Zn2+分布于根的伸长区, 且荧光强度也明显地表现出与浓度相关。由此推断, 根伸长区与Zn2+运输有关, 叶的维管组织是植物细胞外运输Zn2+的主要途径, 细胞间隙和叶表皮毛是植物储存Zn2+的主要区域。HL1适用于检测细胞外Zn2+的分布。
姚宏伟, 刘洋, 程宇来, 于海洋, 刘志亮, 杨菊 . 利用锌特异性探针HL1示踪植物细胞外Zn2+的分布[J]. 植物学报, 2017 , 52(5) : 608 -614 . DOI: 10.11983/CBB16196
We chose Arabidopsis thaliana and Setaria italic as material to study the character of HL1 that can specifically combine with zinc, and the distribution of extracellular Zn2+ by using fluorescence spectrophotometry, isothermal titration calorimetry (ITC200) and inverted fluorescence microscopy. Fluorescence intensity for HL1 was greatly enhanced with the addition of Zn2+ but not other ions. The dissociation constant (KD=7.02×10-4 mol·L-1) exhibited product stability with the combined reaction of HL1 and Zn2+. In A. thaliana, the distribution of extracellular free Zn2+ was mainly located in leaf intercellular space and surface of the trichome where fluorescence intensity was corresponding to the concentration of Zn2+. The distribution of Zn2+ were located in intercellular space and fibrovascular tissue in the leaf of S. italic. The root of elongation zone was existing the blue fluorescence corresponded to the presence and concentration of Zn2+. The root elongation zone relates to Zn2+ transportation, and the leaf intercellular space and trichome surface are related to Zn2+ storage. In conclusion, Investigation of extracellular free Zn2+ by using HL1 is efficient.
Key words: zinc; blue fluorescence; leaf trichome; vascular tissue; intercellular space
[1] | Bermejo C, Ewald JC, Lanquar V, Jones AM, Frommer WB (2011). In vivo biochemistry: quantifying ion and metabolite levels in individual cells orcultures of yeast.Biochem J 438, 1-10. |
[2] | Cakmak I (2000). Tansley review No. 111: possible roles of zinc in protecting plant cells from damage by reactive oxygen species.New Phytol 146, 185-205. |
[3] | Hacisalihoglu G, Hart JJ, Wang YH, Cakmak I, Kochian LV (2003). Zinc efficiency is correlated with enhanced expression and activity of zinc-requiring enzymes in whe- at.Plant Physiol 131, 595-602. |
[4] | Hambidge KM, Miller LV, Westcott JE, Sheng XY, Krebs NF (2010). Zinc bioavailability and homeostasis.Am J Clin Nutr 91, 1478S-1483S. |
[5] | Hantke K (2001). Bacterial zinc transporters and regulators. BioMetals 14, 239-249. |
[6] | Hussain D, Haydon MJ, Wang YW, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004). P-type ATPase heavy metal transporters with roles in es- sential zinc homeostasis in Arabidopsis.Plant Cell 16, 1327-1339. |
[7] | Ji YF, Wang R, Ding S, Du CF, Liu ZL (2012). Synthesis, crystal structures and fluorescence studies of three new Zn(II) complexes with multidentate Schiff base ligands.In- organic Chem Commun 16, 47-50. |
[8] | Kelleher SL, Lönnerdal B (2005). Zip3 plays a major role in zinc uptake into mammary epithelial cells and is regulated by prolactin.Cell Physiol 288, C1042-C1047. |
[9] | Klatte M, Schuler M, Wirtz M, Fink-Straube C, Hell R, Bauer P (2009). The analysis of Arabidopsis nicotiana- mine synthase mutants reveals functions for nicotiana- mine in seed iron loading and iron deficiency responses.Plant Physiol 150, 257-271. |
[10] | Krämer U (2010). Metal hyperaccumulation in plants.Annu Rev Plant Biol 61, 517-534. |
[11] | Lanquar V, Lelièvre F, Bolte S, Hamès C, Alcon C, Neumann D, Vansuyt G, Curie C, Schroder A, Krämer U, Barbier-Brygoo H, Thomine S (2005). Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron.EMBO J 24, 4041-4051. |
[12] | Liuzzi JP, Cousins RJ (2004). Mammalian zinc transporters. Annu Rev Nutr 24, 151-172. |
[13] | Maret W (2009). Molecular aspects of human cellular zinc homeostasis: redox control of zinc potentials and zinc signals.Biometals 22, 149-157. |
[14] | Seigneurin-Berny D, Gravot A, Auroy P, Mazard C, Kraut A, Finazzi G, Grunwald D, Rappaport F, Vavasseur A, Joyard J, Richaud P, Rolland N (2006). HMA1, a new Cu-ATPase of the chloroplast envelope, is essential for growth under adverse light conditions.J Biol Chem 281, 2882-2892. |
[15] | Sinclair SA, Krämer U (2012). The zinc homeostasis network of land plants.Biochim Biophys Acta 1823, 1553-1567. |
[16] | Szymanski DB, Lloyd AM, Marks MD (2000). Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis.Trends Plant Sci 5, 214-219. |
[17] | Zhao H, Eide D (1996). The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation.Proc Natl Acad Sci USA 93, 2454-2458. |
/
〈 | 〉 |