收稿日期: 2016-10-24
录用日期: 2017-01-05
网络出版日期: 2017-07-10
基金资助
国家自然科学基金(No.31571707)
Research Advances in Plant Oil Body
Received date: 2016-10-24
Accepted date: 2017-01-05
Online published: 2017-07-10
胡佳, 刘春林 . 植物油体研究进展[J]. 植物学报, 2017 , 52(5) : 669 -679 . DOI: 10.11983/CBB16204
The oil body, covered with single layer phospholipid membrane, is an important organelle in eukaryotic organisms. Different oil-body proteins embedded in the membrane are crucial for the properties and functions of the oil body. The oil body plays important roles in energy reserve, cell proliferation and differentiation, disease and cold resistance and developmental regulation. In this review, we summarize recent research progress in the structure, biological function, and formation of the oil body in different tissues as well as membrane proteins embedded in the oil body, which will provide a useful reference for future research of oil bodies.
Key words: oil body; oil body architecture; biological function; oil body protein
[1] | 程红焱, 宋松泉 (2006). 种子的贮油细胞器--油体及其蛋白. 植物学通报 23, 418-430. |
[2] | 戴晓峰, 肖玲, 武玉花, 吴刚, 卢长明 (2007). 植物脂肪酸去饱和酶及其编码基因研究进展. 植物学通报 24, 105-113. |
[3] | 丁勇, 徐春雷, 甘莉 (2008). 植物油体及其相关蛋白的研究进展. 华中农业大学学报 27, 558-563. |
[4] | 付三雄, 戚存扣 (2009). 不同海拔地区(南京和拉萨)种植的甘蓝型油菜的种子基因差异表达. 植物学报 44, 178-184. |
[5] | 虢婷婷, 刘祥华, 邢超, 刘春林, 阮颖 (2012). 蓖麻栽培品种的遗传多样性及蓖麻籽脂肪酸组分分析. 湖南农业大学学报(自然科学版) 38, 373-376. |
[6] | 仇键, 谭晓风 (2005). 植物种子油体及相关蛋白研究综述. 中南林学院学报 25, 96-100. |
[7] | 彭琦, 胡燕, 杜培粉, 谢青轩, 阮颖, 刘春林 (2009). 甘蓝型油菜种子不同发育时期SSH文库的构建. 作物学报 35, 1576-1583. |
[8] | 王晓茹, 刘文哲 (2011). 黄连木果实中油体的发育. 植物学报 46, 665-674. |
[9] | Alvarez HM, Steinbüchel A (2002). Triacylglycerols in prokaryotic micro-organisms.Appl Microbiol Biotechnol 60, 367-376. |
[10] | Athenstaedt K, Zweytick D, Jandrositz A, Kohlwein S, Daum G (1999). Identification and characterization of ma- jor lipid particle proteins of the yeast Saccharomyces cere- visiae.J Bacteriol 181, 6441-6448. |
[11] | Bartz R, Li WH, Venables B, Zehmer JK, Roth MR, Welti R, Anderson RGW, Liu PS, Chapman KD (2007). Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic.J Lipid Res 48, 837-847. |
[12] | Baud S, Lepiniec L (2010). Physiological and developmental regulation of seed oil production.Prog Lipid Res 49, 235-249. |
[13] | Binns D, Januszewski T, Chen Y, Hill J, Markin VS, Zhao YM, Gilpin C, Chapman KD, Anderson RG, Goodman JM (2006). An intimate collaboration between peroxiso- mes and lipid bodies.J Cell Biol 173, 719-731. |
[14] | Binns D, Lee S, Hilton CL, Jiang QX, Goodman JM (2010). Seipin is a discrete homooligomer.Biochemistry 49, 10747-10755. |
[15] | Blée E, Boachon B, Burcklen M, Le Guédard M, Hanano A, Heintz D, Ehlting J, Herrfurth C, Feussner I, Bessoule JJ (2014). The reductase activity of the Arabidopsis caleosin RESPONSIVE TO DESSICATION20 mediates gibberellin-dependent flowering time, abscisic acid sensitivity, and tolerance to oxidative stress.Plant Physiol 166, 109-124. |
[16] | Brown LA, Larson TR, Graham IA, Hawes C, Paudyal R, Warriner SL, Baker A (2013). An inhibitor of oil body mobilization in Arabidopsis.New Phytol 200, 641-649. |
[17] | Buhman KK, Chen HC, Farese RV Jr (2001). The enzymes of neutral lipid synthesis.J Biol Chem 276, 40369-40372. |
[18] | Cai YQ, Goodman JM, Pyc M, Mullen RT, Dyer JM, Chapman KD (2015). Arabidopsis SEIPIN proteins modu- late triacylglycerol accumulation and influence lipid droplet proliferation.Plant Cell 27, 2616-2636. |
[19] | Cartwright BR, Goodman JM (2012). Seipin: from human disease to molecular mechanism.J Lipid Res 53, 1042-1055. |
[20] | Chapman KD, Dyer JM, Mullen RT (2012). Biogenesis and functions of lipid droplets in plants: thematic review series: lipid droplet synthesis and metabolism: from yeast to man.J Lipid Res 53, 215-226. |
[21] | Chapman KD, Ohlrogge JB (2012). Compartmentation of triacylglycerol accumulation in plants.J Biol Chem 287, 2288-2294. |
[22] | Chen DH, Molitor A, Liu CL, Shen WH (2010). The Arabidopsis PRC1-like ring-finger proteins are necessary for repression of embryonic traits during vegetative growth.Cell Res 20, 1332-1344. |
[23] | Deruyffelaere C, Bouchez I, Morin H, Guillot A, Miquel M, Froissard M, Chardot T, D'Andrea S (2015). Ubiquitin- mediated proteasomal degradation of oleosins is involved in oil body mobilization during post-germinative seedling growth in Arabidopsis.Plant Cell Physiol 56, 1374-1387. |
[24] | Eastmond PJ (2006).SUGAR-DEPENDENT1 encodes a patatin domain triacylg lycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds.Plant Cell 18, 665-675. |
[25] | Eugeni Piller L, Besagni C, Ksas B, Rumeau D, Bréhélin C, Glauser G, Kessler F, Havaux M (2011). Chloroplast lipid droplet type II NAD(P)H quinone oxidoreductase is essential for prenylquinone metabolism and vitamin K1 accumulation.Proc Natl Acad Sci USA 108, 14354-14359. |
[26] | Feeney M, Frigerio L, Cui YH, Menassa R (2013). Following vegetative to embryonic cellular changes in leaves of Ara- bidopsis overexpressing LEAFY COTYLEDON2.Plant Phy- siol 162, 1881-1896. |
[27] | Fei WH, Shui GH, Gaeta B, Du XM, Kuerschner L, Li P, Brown AJ, Wenk MR, Parton RG, Yang HY (2008). Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast.J Cell Biol 180, 473-482. |
[28] | Fei WH, Wang H, Fu X, Bielby C, Yang HY (2009). Conditions of endoplasmic reticulum stress stimulate lipid droplet formation in Saccharomyces cerevisiae.Biochem J 424, 61-67. |
[29] | Frandsen GI, Mundy J, Tzen JTC (2001). Oil bodies and their associated proteins, oleosin and caleosin.Physiol Plant 112, 301-307. |
[30] | Ghelis T, Bolbach G, Clodic G, Habricot Y, Miginiac E, Sotta B, Jeannette E (2008). Protein tyrosine kinases and protein tyrosine phosphatases are involved in abscisic acid-dependent processes in Arabidopsis seeds and suspension cells.Plant Physiol 148, 1668-1680. |
[31] | Gidda SK, Park S, Pyc M, Yurchenko O, Cai YQ, Wu P, Andrews DW, Chapman KD, Dyer JM, Mullen RT (2016). Lipid droplet-associated proteins (LDAPs) are required for the dynamic regulation of neutral lipid compartmentation in plant cells.Plant Physiol 170, 2052-2071. |
[32] | Graham IA (2008). Seed storage oil mobilization.Annu Rev Plant Biol 59, 115-142. |
[33] | Hara-Nishimura I, Hatsugai N (2011). The role of vacuole in plant cell death.Cell Death Differ 18, 1298-1304. |
[34] | Huang NL, Huang MD, Chen TL, Huang AHC (2013). Oleosin of subcellular lipid droplets evolved in green algae.Plant Physiol 161, 1862-1874. |
[35] | Jacquier N, Choudhary V, Mari M, Toulmay A, Reggiori F, Schneiter R (2011). Lipid droplets are functionally con- nected to the endoplasmic reticulum in Saccharomyces cerevisiae.J Cell Sci 124, 2424-2437. |
[36] | James CN, Horn PJ, Case CR, Gidda SK, Zhang DY, Mullen RT, Dyer JM, Anderson RGW, Chapman KD (2010). Disruption of the Arabidopsis CGI-58 homologue produces Chanarin-Dorfman-like lipid droplet accumula- tion in plants.Proc Natl Acad Sci USA 107, 17833-17838. |
[37] | Jolivet P, Boulard C, Bellamy A, Larré C, Barre M, Rogniaux H, d’Andréa S, Chardot T, Nesi N (2009). Protein composition of oil bodies from mature Brassica napus seeds.Proteomics 9, 3268-3284. |
[38] | Kelly AA, Quettier AL, Shaw E, Eastmond PJ (2011). Seed storage oil mobilization is important but not essential for germination or seedling establishment in Arabidopsis.Pla- nt Physiol 157, 866-875. |
[39] | Krahmer N, Guo Y, Wilfling F, Hilger M, Lingrell S, Heger K, Newman HW, Schmidt-Supprian M, Vance DE, Mann M, Farese RV Jr, Walther TC (2011). Phosphatidylch- oline synthesis for lipid droplet expansion is mediated by localized activation of CTP: phosphocholine cytidylyltrans- ferase.Cell Metab 14, 504-515. |
[40] | Kuerschner L, Moessinger C, Thiele C (2008). Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets.Traffic 9, 338-352. |
[41] | Lévesque-Lemay M, Chabot D, Hubbard K, Chan JK, Miller S, Robert LS (2016). Tapetal oleosins play an essential role in tapetosome formation and protein relocation to the pollen coat.New Phytol 209, 691-704. |
[42] | López-Ribera I, La Paz JL, Repiso C, García N, Miquel M, Hernández ML, Martínez-Rivas JM, Vicient CM (2014). The evolutionary conserved oil body associated protein OBAP1 participates in the regulation of oil body size.Plant Physiol 164, 1237-1249. |
[43] | Miquel M, Trigui G, d’Andréa S, Kelemen Z, Baud S, Berger A, Deruyffelaere C, Trubuil A, Lepiniec L, Dubreucq B (2014). Specialization of oleosins in oil body dynamics during seed development in Arabidopsis seeds.Plant Physiol 164, 1866-1878. |
[44] | Murphy DJ (2011). Plants, Biotechnology and Agriculture. Oxford: CABI Press. |
[45] | Murphy DJ (2012). The dynamic roles of intracellular lipid droplets: from archaea to mammals.Protoplasma 249, 541-585. |
[46] | Nalam VJ, Keeretaweep J, Sarowar S, Shah J (2012). Root-derived oxylipins promote green peach aphid performance on Arabidopsis foliage.Plant Cell 24, 1643-1653. |
[47] | Park S, Gidda SK, James CN, Horn PJ, Khuu N, Seay DC, Keereetaweep J, Chapman KD, Mullen RT, Dyer JM (2013). The α/β hydrolase CGI-58 and peroxisomal trans- port protein PXA1 coregulate lipid homeostasis and signaling in Arabidopsis.Plant Cell 25, 1726-1739. |
[48] | Partridge M, Murphy DJ (2009). Roles of a membrane- bound caleosin and putative peroxygenase in biotic and abiotic stress responses in Arabidopsis.Plant Physiol Bio- chem 47, 796-806. |
[49] | Pasaribu B, Chung TY, Chen CS, Wang SL, Jiang PL, Tzen JTC (2014). Identification of caleosin and two oleosin isoforms in oil bodies of pine megagametophytes.Plant Physiol Biochem 82, 142-150. |
[50] | Penfield S, Pinfield-Wells HM, Graham IA (2006). Storage reserve mobilisation and seedling establishment in Arabidopsis.Arabidopsis Book 4, e0100. |
[51] | Peng Q, Hu Y, Wei R, Zhang Y, Guan CY, Ruan Y, Liu CL (2010). Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds.Plant Cell Rep 29, 317-325. |
[52] | Ploegh HL (2007). A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum.Nature 448, 435-438. |
[53] | Porta H, Rocha-Sosa M (2002). Plant lipoxygenases. Phy- siological and molecular features.Plant Physiol 130, 15-21. |
[54] | Poxleitner M, Rogers SW, Samuels AL, Browse J, Rogers JC (2006). A role for caleosin in degradation of oil-body storage lipid during seed germination.Plant J 47, 917-933. |
[55] | Purkrtová Z, Chardot T, Froissard M (2015). N-terminus of seed caleosins is essential for lipid droplet sorting but not for lipid accumulation.Arch Biochem Biophys 579, 47-54. |
[56] | Robenek H, Hofnagel O, Buers I, Robenek MJ, Troyer D, Severs NJ (2006). Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis.J Cell Sci 119, 4215-4224. |
[57] | Savage MJ, Goldberg DJ, Schacher S (1987). Absolute specificity for retrograde fast axonal transport displayed by lipid droplets originating in the axon of an identified Aplysia neuron in vitro.Brain Res 406, 215-223. |
[58] | Shen Y, Liu MZ, Wang LL, Li ZW, Taylor DC, Li ZX, Zhang M (2016). Identification, duplication, evolution and expre- ssion analyses of caleosins in Brassica plants and Arabidopsis subspecies.Mol Genet Genomics 291, 971-988. |
[59] | Shimada TL, Hara-Nishimura I (2010). Oil-body-membrane proteins and their physiological functions in plants.Biol Pharm Bull 33, 360-363. |
[60] | Shimada TL, Shimada T, Takahashi H, Fukao Y, Hara- Nishimura I (2008). A novel role for oleosins in freezing tolerance of oilseeds in Arabidopsis thaliana.Plant J 55, 798-809. |
[61] | Shimada TL, Takano Y, Shimada T, Fujiwara M, Fukao Y, Mori M, Okazaki Y, Saito K, Sasaki R, Aoki K, Hara- Nishimura I (2014). Leaf oil body functions as a subcellular factory for the production of a phytoalexin in Arabidopsis.Plant Physiol 164, 105-118. |
[62] | Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ (2009). Autophagy regulates lipid metabolism.Nature 458, 1131-1135. |
[63] | Stone SJ, Levin MC, Zhou P, Han JY, Walther TC, Farese RV Jr (2009). The endoplasmic reticulum enzyme DGAT2 is found in mitochondria-associated membranes and has a mitochondrial targeting signal that promotes its association with mitochondria.J Biol Chem 284, 5352-5361. |
[64] | Szymanski KM, Binns D, Bartz R, Grishin NV, Li WP, Agarwal AK, Garg A, Anderson RGW, Goodman JM (2007). The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology.Proc Natl Acad Sci USA 104, 20890-20895. |
[65] | Thazar-Poulot N, Miquel M, Fobis-Loisy I, Gaude T (2015). Peroxisome extensions deliver the Arabidopsis SDP1 lipase to oil bodies.Proc Natl Acad Sci USA 112, 4158-4163. |
[66] | Tzen JTC, Cao YZ, Laurent P, Ratnayake C, Huang AHC (1993). Lipids, proteins, and structure of seed oil bodies from diverse species.Plant Physiol 101, 267-276. |
[67] | Vermachova M, Purkrtova Z, Santrucek J, Jolivet P, Chardot T, Kodicek M (2011). New protein isoforms identified within Arabidopsis thaliana seed oil bodies combining chymotrypsin/trypsin digestion and peptide fragmen- tation analysis.Proteomics 11, 3430-3434. |
[68] | Walther TC, Farese RV Jr (2012). Lipid droplets and cellular lipid metabolism.Annu Rev Biochem 81, 687-714. |
[69] | Warakanont J, Tsai CH, Michel EJ, Murphy III GR, Hsueh PY, Roston RL, Sears BB, Benning C (2015). Chloro- plast lipid transfer processes in Chlamydomonas rein- hardtii involving a TRIGALACTOSYLDIA CYLGLYCEROL 2 (TGD2) orthologue.Plant J 84, 1005-1020. |
[70] | Welte MA, Gross SP, Postner M, Block SM, Wieschaus EF (1998). Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics.Cell 92, 547-557. |
[71] | Yamamoto K, Takahara K, Oyadomari S, Okada T, Sato T, Harada A, Mori K (2010). Induction of liver steatosis and lipid droplet formation in ATF6α-knockout mice burdened with pharmacological endoplasmic reticulum stress.Mol Biol Cell 21, 2975-2986. |
[72] | Yang HY, Galea A, Sytnyk V, Crossley M (2012). Controlling the size of lipid droplets: lipid and protein factors.Curr Opin Cell Biol 24, 509-516. |
[73] | Zehmer JK, Huang YG, Peng G, Pu J, Anderson RGW, Liu PS (2009). A role for lipid droplets in inter-membrane lipid traffic.Proteomics 9, 914-921. |
/
〈 | 〉 |