种子植物抗细胞凋亡DAD基因的演化
收稿日期: 2016-06-21
录用日期: 2017-01-10
网络出版日期: 2017-07-10
基金资助
国家自然科学基金(No.31570218)
Evolution of Defender Against Apoptotic Death (DAD) Genes in Seed Plants
Received date: 2016-06-21
Accepted date: 2017-01-10
Online published: 2017-07-10
抗细胞凋亡基因(DAD)是一个高度保守的细胞凋亡抑制基因, 在植物生长发育中承担重要功能。为全面了解DAD基因在种子植物中的分布和演化规律, 该文利用31种植物的全基因组数据, 通过生物信息学手段, 深入探讨和分析了不同植物类群中DAD基因的拷贝数目、基因结构和染色体定位, 并综合另外7种裸子植物的转录组数据探讨了其在种子植物中的演化趋势。结果表明, DAD基因属于低拷贝基因, 在不同种子植物中只具有1-3个拷贝; 不同DAD基因编码的氨基酸长度在108-170 aa之间变动。同线性和系统发育分析进一步表明, 种子植物DAD基因的演化具有明显的谱系特异性。随机复制和染色体大片段复制及其随后的基因丢失可能是其维持低拷贝的重要方式。
包颖, 梅玉芹 . 种子植物抗细胞凋亡DAD基因的演化[J]. 植物学报, 2017 , 52(5) : 590 -597 . DOI: 10.11983/CBB16137
Defender against apoptotic death (DAD) is a highly conserved cellular apoptosis gene and plays an important role in seed plant growth and development. To fully understand the evolutionary pattern of the DAD gene in seed plants, based on the whole genome data of 31 plants, we analyzed copy number, structure, chromosome location of the DAD genes by using bioinformatics. In addition, along with transcriptome data for seven gymnosperms, we discuss the evolutionary trend of the genes in seed plants. The DAD gene is a low-copy gene with only 1-3 copies in different seed plants, and the length of different DAD protein varies from 108 to 170 aa. Phylogenetic and syntonic analyses further showed that the evolution of the DAD gene in these seed species has a lineage-specific characteristic. Random and block duplication and subsequent gene loss were possibly important ways to maintain the low-copy number of DAD genes in seed plant genomes.
Key words: chromosome location; DAD; duplication pattern; whole genome; gene structure
[1] | 龚文芳, 喻树迅, 宋美珍, 范术丽, 庞朝友, 肖水平 (2010). 棉花抗细胞凋亡基因GhDAD1的克隆、定位及表达分析. 中国农业科学 43, 3713-3723. |
[2] | 贾志蓉, 李丹, 吕应堂 (2004). 拟南芥AtDAD1超量表达植株对H2O2抗性的研究. 武汉植物学研究 22, 373-379. |
[3] | 杨舒雅, 史娟, 马斌芳, 赵洁, 金晓航 (2012). 抗细胞凋亡因子DAD1的研究进展. 生理科学进展 43, 315-318. |
[4] | Apte SS, Mattei MG, Seldin MF, Olsen BR (1995). The highly conserved defender against the death 1 (DAD1) gene maps to human chromosome 14q11-q12 and mouse chromosome 14 and has plant and nematode homologs. FEBS Lett 363, 304-306. |
[5] | Blanc G, Hokamp K, Wolfe KH (2003). A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome.Genome Res 13, 137-144. |
[6] | Danon A, Rotari VI, Gordon A, Mailhac N, Gallois P (2004). Ultraviolet-C overexposure induces programmed cell death in Arabidopsis, which is mediated by caspase- like activities and which can be suppressed by caspase inhibitors, p35 and defender against apoptotic death.J Biol Chem 279, 779-787. |
[7] | Gallois P, Makishima T, Hecht V, Despres B, Laudié M, Nishimoto T, Cooke R (1997). An Arabidopsis thaliana cDNA complementing a hamster apoptosis suppressor mutant.Plant J 11, 1325-1331. |
[8] | Gouy M, Guindon S, Gascuel O (2010). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building.Mol Biol Evol 27, 221-224. |
[9] | Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.Syst Biol 59, 307-321. |
[10] | Kelleher DJ, Gilmore R (1997). DAD1, the defender against apoptotic cell death, is a subunit of the mammalian oligosaccharyltransferase.Proc Natl Acad Sci USA 94, 4994-4999. |
[11] | Kerr JFR, Wyllie AH, Currie AR (1972). Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics.Br J Cancer 26, 239-257. |
[12] | Mondragón-Palomino M, Meyers BC, Michelmore RW, Gaut BS (2002). Patterns of positive selection in the com- plete NBS-LRR gene family of Arabidopsis thaliana.Genome Res 12, 1305-1315. |
[13] | Nakashima T, Sekiguchi T, Kuraoka A, Fukushima K, Shibata Y, Komiyama S, Nishimoto T (1993). Molecular cloning of a human cDNA encoding a novel protein, DAD1, whose defect causes apoptotic cell death in hamster BHK21 cells.Mol Cell Biol 13, 6367-6374. |
[14] | Raff M (1998). Cell suicide for beginners.Nature 396, 119-122. |
[15] | Roboti P, High S (2012). The oligosaccharyltransferase subunits OST48, DAD1 and KCP2 function as ubiquitous and selective modulators of mammalian N-glycosylation.J Cell Sci 125, 3474-3484. |
[16] | Ronquist F, Huelsenbeck JP (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models.Bioinformatics 19, 1572-1574. |
[17] | Schwartzman RA, Cidlowski JA (1993). Apoptosis: the biochemistry and molecular biology of programmed cell death.Endocr Rev 14, 133-151. |
[18] | Williams GT, Smith CA (1993). Molecular regulation of apoptosis: genetic controls on cell death.Cell 7, 777-779. |
[19] | Wortman JR, Haas BJ, Hannick LI, Smith RK, Maiti R, Ronning CM, Chan AP, Yu CH, Ayele M, Whitelaw CA, White OR, Town CD (2003). Annotation of the Arabidopsis genome.Plant Physiol 132, 461-468. |
[20] | Ye CY, Li T, Yin H, Weston DJ, Tuskan GA, Tschaplinski TJ, Yang X (2012). Evolutionary analyses of non-family genes in plants.Plant J 73, 788-797. |
/
〈 | 〉 |