研究报告

落叶松体胚发育中5个miRNA前体与成熟体的表达

展开
  • 1中国林业科学研究院林业研究所细胞生物学实验室, 北京 100091;
    2浙江农林大学亚热带森林培育国家重点实验室培育基地, 临安 311300;
    3中国林业科学研究院森林生态环境与保护研究所, 北京 100091

收稿日期: 2012-04-06

  修回日期: 2012-05-24

  网络出版日期: 2012-07-24

基金资助

国家自然科学基金项目;国家“973”计划项目

Expression Analysis of Five MiRNAs and Their Precursors During Somatic Embryogenesis in Larch

Expand
  • 1Laboratory of Cell Biology, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;

    2The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Lin’an 311300, China

    3Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China

Received date: 2012-04-06

  Revised date: 2012-05-24

  Online published: 2012-07-24

摘要

利用同源比对或RACE克隆了5个落叶松(Larix leptolepis) miRNA前体。结果显示, 在各物种miRNA前体间, 成熟序列高度相似, 但其它序列相似度差异大, 序列相似度与亲缘关系有关。采用qRT-PCR分析了5个miRNA、前体和靶基因在落叶松体胚8个发育阶段的表达变化。结果显示, miRNA表达最高峰出现在后期子叶胚, 暗示与促进胚胎休眠有关; 表达次高峰出现时期不同, 表现为miR397和miR408在PEMIII, miR398在早期单胚, miR156和miR166在早期子叶胚, 表明其与保持薄细胞壁、质子传递、顶端分生组织形成等调控有关。miRNA成熟体表达与前体含量不呈线性相关, 可能受多重调控。研究结果对于阐明MIR基因进化、表达调控及在体胚发育中的调控功能具有重要理论意义。

本文引用格式

张俊红, 张守攻, 吴涛, 韩素英, 杨文华, 齐力旺 . 落叶松体胚发育中5个miRNA前体与成熟体的表达[J]. 植物学报, 2012 , 47(5) : 462 -473 . DOI: 10.3724/SP.J.1259.2012.00462

Abstract

We used the homolog search strategy or RACE to obtain 5 precursor microRNAs (miRNAs) of larch, Larix leptolepis. Mature miRNAs shared high similarity among plant species, and non-mature sequences showed distinct similarity related to genetic relationships. Expression profiles of the 5 precursor and mature miRNAs were examined during 8 developmental stages with quantitative RT-PCR. The expression of precursor and mature miRNAs changed dynamically during developmental stages, with major peaks in expression for mature miRNAs in late cotyledonous embryos, which might be associated with promoting embryo dormancy. However, miR397 and miR408 showed minor peaks in expression at PEMIII, miR398 at the early single embryo stage, and miR156 and miR166 at the early cotyledonous embryo stage, which might be related to regulation to maintain a thin cell wall, proton transfer between photo systems, and formation of shoot meristem. However, the expression of mature miRNAs was not linearly associated with that of precursor miRNAs, which might be regulated at several levels. Our study sheds light on miRNA evolution, expression regulation of mature miRNAs, and regulation of somatic embryogenesis in larch.

参考文献

Allen E, Xie ZX, Gustafson AM, Sung GH, Spatafora JW, Carrington JC (2004). Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nature Genetics 36, 1282-1290.
Ameres SL, Horwich MD, Hung JH, Xu J, Ghildiyal M, Weng Z, Zamore PD (2010). Target RNA-directed trimming and tailing of small silencing RNAs. Science 328, 1534-1539.
Arvey A, Larsson E, Sander C, Leslie CS, Marks DS (2010). Target mRNA abundance dilutes microRNA and siRNA activity. Mol Syst Biol 6, 363.
Baccarini A, Chauhan H, Gardner TJ, Jayaprakash AD, Sachidanandam R, Brown BD (2011). Kinetic analysis reveals the fate of a microRNA following target regulation in mammalian cells. Curr Biol 21, 369-376.
Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297.
Chatterjee S, Grosshans H (2009). Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature 461, 546-549.
Chugh A, Khurana P (2002). Gene expression during somatic embryogenesis –recent advances. CURRENT SCIENCE 83, 715-730.
Constabel CP, Yip L, Patton JJ, Christopher ME (2000). Polyphenol oxidase from hybrid poplar. Cloning and expression in response to wounding and herbivory. Plant Physiol 124, 285-295.
Cruz-Gallardo I, Diaz-Moreno I, Diaz-Quintana A, De la Rosa MA (2011). The cytochrome f-plastocyanin complex as a model to study transient interactions between redox proteins. Febs Lett 586, 646-652.
Dai X, Zhao aPX (2011). psRNATarget: a plant small RNA target analysis server. Nucleic Acids Research 39, 155-159.
Huang TH, Fan B, Rothschild MF, Hu ZL, Li K, Zhao SH (2007). MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans. Bmc Bioinformatics 8, 1-10.
Jones-Rhoades MW, Bartel DP, Bartel B (2006). MicroRNAs and Their Regulatory Roles in Plants. Annu Rev Plant Biol 57, 19-53.
Li AL, Mao L (2007). Evolution of plant microRNA gene families. Cell Res 17, 212-218.
Llave C, Xie Z, Kasschau KD, Carrington JC (2002). Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053-2056.
Luciano DJ, Mirsky H, Vendetti NJ, Maas S (2004). RNA editing of a miRNA precursor. RNA 10, 1174-1177.
Luo YC, Zhou H, Li Y, Chen JY, Yang JH, Chen YQ, Qu LH (2006). Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. Febs Lett 580, 5111-5116.
Matthew W Jones-Rhoades and David P Bartel* (2004). Computational Identification of Plant MicroRNAs and Their Targets, Including a Stress-Induced miRNA. Molecular Cell 14, 787-799.
McHale NA, Koning RE (2004). MicroRNA-directed cleavage of Nicoltiana sylvestris PHAVOLUTA mRNA regulates the vascular cambium and structure of apical Meristems. Plant Cell 16, 1730-1740.
Nodine MD, Bartel DP (2010). MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes Dev 24, 2678-2692.
Oh TJ, Wartell RM, Cairney J, Pullman GS (2008). Evidence for stage-specific modulation of specific microRNAs (miRNAs) and miRNA processing components in zygotic embryo and female gametophyte of loblolly pine (Pinus taeda). New Phytol 179, 67-80.
Pawlicki JM, Steitz JA (2008). Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production. J Cell Biol 182, 61-76.
Qin Y, Duan Z, Xia X, Yin W (2011). Expression profiles of precursor and mature microRNAs under dehydration and high salinity shock in Populus euphratica. Plant Cell Rep 30, 1893-1907.
Rajewsky KCaN (2007). The evolution of gene regulation by transcription factors and microRNAs. NATURE REVIEWS | GENETICS 8, 93-103.
Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002). MicroRNAs in plants. Genes Dev 16, 1616-1626.
Schauer SE, Jacobsen SE, Meinke DW, Ray A (2002). DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci 7, 487-491.
Schmittgen TD, Lee EJ, Jiang J, Sarkar A, Yang L, Elton TS, Chen C (2008). Real-time PCR quantification of precursor and mature microRNA. Methods 44, 31-38.
Schwarzerova K, Vondrakova Z, Fischer L, Borikova P, Bellinvia E, Eliasova K, Havelkova L, Fiserova J, Vagner M, Opatrny Z (2010). The role of actin isoforms in somatic embryogenesis in Norway spruce. BMC Plant Biol 10, 89.
Song L, Axtell MJ, Fedoroff NV (2010). RNA secondary structural determinants of miRNA precursor processing in Arabidopsis. Curr Biol 20, 37-41.
Vernoux T, Benfey PN (2005). Signals that regulate stem cell activity during plant development. Curr Opin Genet Dev 15, 388-394.
Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC (2005). Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development 132, 3657-3668.
Willmann MR, Mehalick AJ, Packer RL, Jenik PD (2011). MicroRNAs regulate the timing of embryo maturation in Arabidopsis. Plant Physiol 155, 1871-1884.
Wu XM, Liu MY, Ge XX, Xu Q, Guo WW (2011). Stage and tissue-specific modulation of ten conserved miRNAs and their targets during somatic embryogenesis of Valencia sweet orange. Planta 233, 495-505.
Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC (2005). Expression of Arabidopsis MIRNA genes. Plant Physiol 138, 2145-2154.
Zhang S, Zhou J, Han S, Yang W, Li W, Wei H, Li X, Qi L (2010). Four abiotic stress-induced miRNA families differentially regulated in the embryogenic and non-embryogenic callus tissues of Larix leptolepis. Biochem Biophys Res Commun 398, 355-360.
文章导航

/