专题论坛

活性氧对植物自噬调控的研究进展

展开
  • 河南工业大学生物工程学院, 郑州 450001

收稿日期: 2012-01-09

  修回日期: 2012-05-11

  网络出版日期: 2012-07-24

基金资助

河南工业大学引进人才专项;国家自然科学青年基金

Research Progress in Regulation of Reactive Oxygen Species in Plant Autophagy

Expand
  • College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China

Received date: 2012-01-09

  Revised date: 2012-05-11

  Online published: 2012-07-24

摘要

自噬是一种在真核生物中高度保守的降解细胞组分的生物过程, 在饥饿、衰老和病菌感染等过程中起关键作用。而活性氧是有氧生物在正常或胁迫条件下产生的一种代谢副产物, 在植物的生长发育、胁迫适应和程序性细胞死亡过程中起重要作用。最新研究结果表明, 当植物受到病菌感染产生超敏反应时活性氧和自噬在程序性细胞死亡、生长发育和胁迫适应过程中起重要调控作用。因此, 该文结合最新的研究进展, 从活性氧的种类及特点、自噬的分子基础以及活性氧在植物自噬中的作用等方面, 探讨了活性氧与植物自噬之间的信号转导关系。

本文引用格式

景红娟, 周广舟, 谭晓荣, 平康康, 任雪建 . 活性氧对植物自噬调控的研究进展[J]. 植物学报, 2012 , 47(5) : 534 -542 . DOI: 10.3724/SP.J.1259.2012.00534

Abstract

Autophagy is a highly conserved biological progress in degradation of the cell components and has key roles in starvation, senescence and infection by pathogens. Moreover, reactive oxygen species (ROS) is a byproduct of higher plants during normal and stress conditions and plays an important role in regulation of growth and development and programmed cell death during stress response. Recent research has shown that ROS and autophagy both regulate programmed cell death in the hypersensitive reaction during infection by pathogens, growth and development and stress adaptation. We discuss the signal interaction between ROS and autophagy in plants, including species and characteristics of ROS, the molecular basis of plant autophagy, and  functions of ROS in plant autophagy.

参考文献

Bassham DC (2007). Plant autophagy--more than a starvation response. Curr Opin Plant Biol 10(6), 587-93.
Chang YY, Neufeld TP (2009). An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation. Mol Biol Cell 20, 2004–2014.
Chen CN, Chen HR, Yeh SY, Vittore G, Ho TH (2009). Autophagy is enhanced and floral development is impaired in AtHVA22d RNA interference Arabidopsis. Plant Physiol 149(4), 1679-89.
Chen Y, Azad MB, Gibson SB (2009). Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 16, 1040–1052.
Chung T, Phillips AR, Vierstra RD (2010). ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A AND ATG12B loci. Plant J 62(3):483-93.
De Meyer GR, Martinet W (2009). Autophagy in the cardiovascular system. Biochim Biophys Acta 1793,1485-95.
Diaz-Troya S, Perez-Perez ME, Florencio FJ, Crespo JL (2008). The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy 4(7), 851–865.
Essick EE, Sam F (2010). Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer. Oxid Med Cell Longev 3(3), 168-177
Gechev TS, Van Breusegem F, Stone JM, DenevI, Laloi C (2006). Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28,1091–101.
Halliwell B, Gutteridge JMC (2006). Free radicals in biology and medicine, 4th ed. Oxford: Clarendon Press.
Han S, Yu B, Wang Y, Liu Y (2011). Role of plant autophagy in stress response. Protein Cell 2(10), 784–791.
Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi Y (2007). The Atg12–Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 282, 37298–37302.
Hanaoka H, Noda T, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Ohsumi Y (2002). Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol 129(3):1181-93.
Harrison-Lowe NJ, Olsen LJ (2008). Autophagy Protein 6 (ATG6) is Required for Pollen Germination in Arabidopsis thaliana. Autophagy 4:3, 339-348
Hayward AP, Dinesh-Kumar SP (2011). What can plant autophagy do for an innate immune response? Annu Rev Phytopathol 49, 557-76
Hayward AP, Tsao J, Dinesh-Kumar SP (2009). Autophagy and plant innate immunity: Defense through degradation. Semin Cell Dev Biol 20(9),1041-7.
He C, Klionsky DJ (2009). Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43, 67–93
Henzler T, Steudel E (2000). Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. J Exp Bot 51, 2053–2066.
Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, YamadaN, Guan JL, Oshiro N, Mizushima N (2009) .Nutrient dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20, 1981–1991.
Inoue Y, Suzuki T, Hattori M, Yoshimoto K, Ohsumi Y, Moriyasu Y (2006). AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells. Plant Cell Physiol 47(12), 1641–1652
Kanki T, Wang K, Cao Y, Baba M, Klionsky DJ (2009) Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 17, 98–109.
Klionsky DJ, Ohsumi Y (1999). Vacuolar import of proteins and organelles from the cytoplasm. Annu Rev Cell Dev Biol 15, 1-32.
Kon M, Cuervo AM (2010). Chaperone-mediated autophagy in health and disease. FEBS Lett 584,1399-404.
Kwon SI, Cho HJ, Jung JH, Yoshimoto K, Shirasu K, Park OK (2010a). The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis. Plant J 64(1),151-64.
Kwon SI, Cho HJ, Park OK (2010b). Role of Arabidopsis RabG3b and autophagy in tracheary element differentiation. Autophagy 6(8),1187-9.
Lenz HD, Haller E, Melzer E, Gust AA, Nuernberger T (2011). Autophagy controls plant basal immunity in a pathogenic lifestyle-dependent manner. Autophagy 7(7), 773-4.
Lenz HD, Haller E, Melzer E, Kober K, Wurster K, Stahl M, Bassham DC, Vierstra RD, Parker JE, Bautor J, Molina A, Escudero V, Shindo T, van der Hoorn RA, Gust AA, Nürnberger T (2011). Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. Plant J 66(5), 818-30.
Levine B, Kroemer G (2008). Autophagy in the pathogenesis of disease. Cell 132:27-42.
Liu Y, Bassham DC (2010). Tor is a negative regulator of autophagy in Arabidopsis thaliana. PLoS Biol 5(7):1-8.
Liu Y, Schiff M, Czymmek K, Tallóczy Z, Levine B, Dinesh-Kumar SP (2005). Autophagy regulates programmed cell death during the plant innate immune response. Cell 121(4), 567-577.
Liu Y, Xiong Yan, Bassham DC (2009). Autophagy is required for tolerance of drought and salt stress in plants. Autophagy 5(7), 954-963
Mahfouz MM, Kim S, Delauney AJ, Verma DP (2006). Arabidopsis TARGET OF RAPAMYCIN interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals. Plant Cell 18(2):477-490.
Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, Meyer C, Robaglia C (2002). Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc Natl Acad Sci USA 99(9):6422–6427
Moriyasu Y, Hattori M, Jauh GY, Rogers JC (2003). Alpha tonoplast intrinsic protein is specifically associated with vacuole membrane involved in an autophagic process. Plant Cell Physiol 44, 795-802.
Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009). Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10, 458–467.
Reumann S, Voitsekhovskaja O, Lillo C (2010). From signal transduction to autophagy of plant cell organelles: lessons from yeast and mammals and plant-specific features. Protoplasma 247: 233–256.
Rinalducci S, Murgiano L, Zolla L (2008). Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. J Exp Bot 59(14), 3781–3801
Sagi M, Fluhr R (2006). Production of Reactive Oxygen Species by Plant NADPH Oxidases1. Plant Physiol 141: 336–340.
Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007). Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26, 1749–1760.
Seay M, Hayward AP, Tsao J, Dinesh-Kumar SP (2009). Something old, something new: plant innate immunity and autophagy. Curr Top Microbiol Immunol 335, 287-306.
Shin JH, Yoshimoto K, Ohsumi Y, Jeon, JS, and An G (2009). OsATG10b, an autophagosome component, is needed for cell survival against oxidative stresses in rice. Mol Cells 27, 67–74.
?lesak I, Libik M, Karpinska B, Karpinski? S and Miszalski Z (2007). The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochimica Polonica 54(1), 39-50.
Sormani R, Yao L, Menand B, Ennar N, Lecampion C, Meyer C, Robaglia C (2007). Saccharomyces cerevisiae FKBP12 binds Arabidopsis thaliana TOR and its expression in plants leads to rapamycin susceptibility. BMC Plant Biol 7:26.
Swanson S, Gilroy S (2010). ROS in plant development. Physiol Plantarum 138, 384-392.
Talbot NJ, Kershaw MJ (2009). The emerging role of autophagy in plant pathogen attack and host defence. Curr Opin Plant Biol 12(4), 444-50.
Thumm M, Egner R, Koch B, Schlumpberger M, Straub M, Veenhuis M, Wolf DH (1994). Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett 349, 275-280.
Triantaphylidès C, and Havaux M (2009). Singlet oxygen in plants: production, detoxification and signaling. Trends in Plant Sci 14 (4): 919-927
Triantaphylides C, Krischke M, Hoeberichts FA, Ksas B, Gresser G, Havaux M, Van Breusegem F, Mueller MJ (2008). Singlet oxygen is the major reactive oxygen species involved in photo-oxidative damage to plants. Plant Physiol 148, 960-968.
Tsukada M, Ohsumi Y (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333, 169-174.
Van Breusegem F, Vranova′ E, Dat JF, Inze′ D (2001). The role of active oxygen species in plant signal transduction. Plant Sci 161, 405–414.
Vranová E, Inzé D, Breusegem FV (2002). Signal transduction during oxidative stress. J Exp Bot 53(372), 1227-1236.
Wang Y, Nishimura MT, Zhao T, Tang D (2011). ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant J 68(1):74-87.
Wang Y, Wu Y, Tang D (2011). The autophagy gene, ATG18a, plays a negative role in powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant Signal Behav 1, 6(9).
Yan Xiong, Anthony L. Contento, Phan Quang Nguyen, Diane C (2007a). Bassham. Degradation of Oxidized Proteins by Autophagy during Oxidative Stress in Arabidopsis. Plant Physiol 143,291-299
Xiong Y, Contento AL, Bassham DC (2007b). Disruption of autophagy results in constitutive oxidative stress in Arabidopsis. Autophagy 3(3), 257–258
Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K (2009). Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21(9), 2914-27.
Yoshimoto K, Takano Y, Sakai Y (2010). Autophagy in plants and phytopathogens. FEBS Letters 584, 1350–1358:
Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, Noda T, Ohsumi Y (2004). Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16, 2967–2983.
文章导航

/