研究报告

NaCl对渗透胁迫下三角叶滨藜光合作用和水分状况的调节

展开
  • 鲁东大学生命科学学院, 烟台 264025

收稿日期: 2011-11-18

  修回日期: 2012-05-26

  网络出版日期: 2012-07-24

基金资助

国家重点基础研究发展计划

Effect of NaCl on Photosynthesis and Water Status in Arrowleaf Saltbush Under Osmotic Stress

Expand
  • College of Life Sciences, Ludong University, Yantai 264025, China

Received date: 2011-11-18

  Revised date: 2012-05-26

  Online published: 2012-07-24

Supported by

973

摘要

以溶液培养的三角叶滨藜(Atriplex triangularis)为材料, 测定分析了在PEG诱导的渗透胁迫条件下, 适量的NaCl对其光合作用和水分吸收的影响, 以探讨环境溶液中NaCl对植物适应干旱的影响。结果表明, PEG诱导的渗透胁迫导致三角叶滨藜植株吸水困难、叶绿素含量降低、光合系统受损、生长受抑制、生物量减少; 而在PEG渗透胁迫的处理液中添加10–40 mmol·L–1NaCl可以明显降低植株水势和叶片渗透势, 维持较高的细胞膨压, 减缓PEG渗透胁迫对光合系统的破坏作用, 保证相对较高的光合速率和生长速度, 从而有效增强了三角叶滨藜对渗透胁迫的适应能力。

本文引用格式

柏新富, 卜庆梅, 谭永芹, 朱建军, 刘林德 . NaCl对渗透胁迫下三角叶滨藜光合作用和水分状况的调节[J]. 植物学报, 2012 , 47(5) : 500 -507 . DOI: 10.3724/SP.J.1259.2012.00500

Abstract

We investigated the effect of moderate NaCl on photosynthesis and water absorption in arrowleaf saltbush (Atriplex triangularis) under PEG-induced osmotic stress to understand the effect of NaCl on plant adaptation to drought stress. PEG-induced osmotic stress led to reduced water absorption and chlorophyll content, injured photosystem and growth and reduced biomass. The addition of NaCl at 10–40 mmol·L–1 could reduce water potential and osmotic potential, maintain a high turgor, alleviate the destructive effect of osmotic stress to the photosystem, ensure a relatively high rate of photosynthesis and plant growth, and thus increase the adaptability of the plant to osmotic stress.

参考文献

陈成升, 谢志霞, 刘小京 (2009). 旱盐互作对冬小麦幼苗生长及其抗逆生理特性的影响. 应用生态学报 20(4), 811-816.
陈贻竹, 李晓萍, 夏 丽, 郭俊彦 (1995). 叶绿素荧光技术在植物环境胁迫研究中的应用. 热带亚热带植物学报 3(4), 79-86.
高辉远, 邹 琦, 程炳嵩 (1993).大豆光合日变化过程中气孔限制和非气孔限制的研究.西北植物学报13(2), 96-102.
李平华, 张 慧, 王宝山 (2003). 盐胁迫下植物细胞离子稳态重建机制. 西北植物学报 3(10), 1810-1817.
李 岩, 李德全, 潘海春, 束怀瑞 (1998). 土壤干旱胁迫下苹果叶片膨压维持对光合速率及生长的影响. 果树科学15(4), 289-292.
吕慧颖, 李银心, 孔凡江, 杨庆凯 (2003). 植物Na+/H+逆向转运蛋白研究进展.植物学通报20(3), 363-369.
罗庆云, 於丙军, 刘友良 (2003). NaCl胁迫下Cl -和Na+对大豆幼苗胁迫作用的比较. 中国农业科学 36 (11), 1390-1394.
王艳华, 王爱云, 柏新富 (2005). 盐胁迫对三角滨藜种子萌发和幼苗生长的影响. 烟台师范学院学报(自然科学版) 21 (4), 290-292.
许大全 (1997). 光合作用气孔限制分析中的一些问题. 植物生理学通讯 33(4), 241-244.
郁万文, 曹帮华, 曹福亮 (2007). 干旱、旱盐胁迫对刺槐生长及离子吸收分配的影响. 南京林业大学学报(自然科学版) 31(3), 68-72.
张守仁 (1999). 叶绿素荧光动力学参数的意义及讨论.植物学通报 16 (4), 444-448.
邹邦基 (1980). 钠的植物营养与生理生态. 植物生理学通讯 (5), 5-11.
Berry JA, Downton WJS (1982). Environmental regulation of photosynthesis. In: Govind J, eds. Photosynthesis (VolⅡ). New York: Academic Press. pp.263-343.
Chen H, Jiang JG (2010). Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environ Rev 18, 309-319.
Morgan JM (1984). Osmoregulation and water stress in higher plants. Annual Review of Plant Physiol 35, 299-319.
Parida AK, Das AB (2005). Salt tolerance and salinity effects on plants: a review. Ecotox Environ Safe 60, 324-349.
Quintero FJ, Blatt MR, Parda JM (2000). Functional conservation between yeast and plant endosomal Na+/H+ antiporters . FEBS Lett 471, 224-228.
Schreiber U, Bilger W, Neubauer C (1994). Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. Ecological Studies: Analysis and Synthesis 100, 49-70.
Slama I, Ghnaya T, Messedi D, Hessini K, Labidi N, Savoure A, Abdelly C (2007). Effect of sodium chloride on the response of the halophyte species Sesuvium portulacastrum grown in mannitol-induced water stress. J Plant Res 120, 291-299.
Tezara W, Mitchell VJ, Driscoll SD (1999), Lawlor DW. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401, 914-917.
Turnet NC (1975). Concurrent comparisons of stomatal behavior, water status, and evaporation of maize in soil at high or low water potential. Plant Physiol 55, 932-936.
文章导航

/