Andrews RK, Harris SJ, McNally T, Berndt MC (1998). Binding of purified 14-3-3 zeta signaling protein to discrete amino acid sequences within the cytoplasmic domain of the platelet membrane glycoprotein Ib-IX-V complex. Biochemistry 37, 638-647.
Bai MY, Zhang LY, Gampala SS, Zhu SW, Song WY, Chong K, Wang ZY (2007). Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci U S A 104, 13839 - 13844.
Chang IF, Curran A, Woolsey R, Quilici D, Cushman JC, Mittler R, Harmon A, Harper JF (2009). Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana. Proteomics 9, 2967-2985.
Casaretto J, Ho TH (2003). The transcription factors HvABI5 and HvVP1 are required for the abscisic acid induction of gene expression in barley aleurone cells. Plant Cell 15, 271–284.
Christie JM (2007). Phototropin blue-light receptors. Annu Rev Plant Biol 58, 21-45.
Chung HJ, Sehnke PC, Ferl RJ (1999). The 14-3-3 proteins: Cellular regulators of plant metabolism. Trends Plant Sci 4, 367-371.
Coblitz B, Wu M, Shikano S, Li M (2006). C-terminal binding: an expanded repertoire and function of 14-3-3 proteins. FEBS Lett 580, 1531-1535.
Cotelle V, Meek SEM, Provan F, Milne FC, Morrice N, MacKintosh C (2000). 14-3-3s regulate global cleavage of their diverse binding partners in sugar-starved Arabidopsis cells. EMBO J 19, 2869-2876.
del Viso F, Casaretto JA, Quatrano RS (2007). 14-3-3 Proteins are components of the transcription complex of the ATEM1 promoter in Arabidopsis. Planta 227, 167-175.
Fuglsang AT, Guo Y, Cuin TA, Qiu Q, Song C, Kristiansen KA, Bych K, Schulz A, Shabala S, Schumaker KS, Palmgren MG, Zhu JK (2007). Arabidopsis Protein Kinase PKS5 Inhibits the Plasma Membrane H+-ATPase by preventing interaction with 14-3-3 protein. Plant Cell 19, 1617 - 1634.
Folta KM, Paul AL, Mayfield JD, Ferl RJ (2008). 14-3-3 Isoforms participate in red light signaling and photoperiodic flowering. Plant Signal Behav 3, 304-306.
Fukazawa J, Sakai T, Ishida S, Yamaguchi I, Kamiya Y, Takahashi Y (2000). Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins. Plant Cell 12, 901–915.
Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2006). Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci U S A 103, 1988–1993.
Gampala SS, Kim TW, He JX, Tang W, Deng Z, Bai MY, Guan S, Lalonde S, Sun Y, Gendron JM, Chen H, Shibagaki N, Ferl RJ, Ehrhardt D, Chong K, Burlingame AL, Wang ZY (2007). An essential role for 14-3-3 Proteins in brassinosteroid signal transduction in Arabidopsis. Dev Cell 13,177–189.
Ganguly S, Weller J L, Ho A, Chemineau P, Malpaux B, Klein DC (2005). Melatonine synthesis: 14-3-3-dependent activation and inhibition of arylalkylamine N-acetyltransferase by phosphoserine-205. Proc Natl Acad Sci U S A 102, 1222-1227
Hayashi M, Inoue S, Takahashi K, and Kinoshita T (2011). Immunohistochemical Detection of Blue Light-induced Phosphorylation of the Plasma Membrane H+-ATPase in Stomatal Guard Cells. Plant Cell Physiol 52, 1238-1248.
Himmelbach A, Yang Y, Grill E (2003). Relay and control of abscisic acid signaling. Curr Opin Plant Biol 6, 470–479.
Inoue S, Kinoshita T, Matsumoto M, Nakayama KI, Doi M, Shimazaki K (2008). Blue light-induced autophosphorylation of phototropin is a primary step for signaling. Proc Natl Acad Sci U S A 105, 5626-5631.
Ishida S, Fukazawa J, Yuasa T, Takahashi Y (2004). Involvement of 14-3-3 signaling protein binding in the functional regulation of the transcriptional activator REPRESSION OF SHOOT GROWTH by gibberellins. Plant Cell 16, 2641-2651.
Ishida S, Yuasa T, Nakata M, Takahashi Y (2008). A tobacco calcium- dependent protein kinase, CDPK1, regulates the transcription factor REPRESSION OF SHOOT GROWTH in response to gibberellins. Plant Cell 20, 3273-3288.
Mayfield JD, Folta KM, Paul AL, Ferl RJ (2007).The 14-3-3 proteins mu and upsilon influence transition to flowering and early phytochrome response. Plant Physiol 145, 1692-1702.
Kanczewska J, Marco S, Vandermeeren C, Maudoux O, Rigaud JL, Boutry M (2005). Activation of the plant plasma membrane H+-ATPase by phosphorylation and binding of 14-3-3 protein converts a dimmer into a hexamer. Proc Natl Acad Sci U S A 102, 11675-11680.
Kumaran S, Yi H, Krishnan HB, Jez JM (2009). Assembly of the cysteine synthase complex and the regulatory role of protein-protein interactions. J Biol Chem 284, 10268–10275.
Lancien M, McCabe TC, Chang C, Roberts Michael R (2005). Roles for plant 14-3-3 proteins in signalling and development. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 141 (3 Supp). S258- S259.
Liu D, Bienkowska J, Petosa C, Collier R J, Fu H, Liddington R (1995). Crystal structure of the zeta isoform of the 14-3-3 protein. Nature 376, 191-194.
Lopez-Molina L, Mongrand S, Chua NH (2001). A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci U S A 98, 4782–4787.
Lu G, DeLisle AJ, de Vetten N C, Ferl RJ (1992). Brain proteins in plants: an Arabidopsis homolog to neurotransmitter pathway activators is part of a DNA binding complex. Proc Natl Acad Sci U S A 89, 11490-11494.
Moor BW, Perez VJ (1967). Specific proteins of the nervous system. In: Carlson F, ed. Physiological and Biochemical Aspects of Nervous integration. Prentice Hall, Woods Hole, MA: USA. pp. 343-359.
Petosa C, Masters SC, Bankston LA, Pohl J, Wang B, Fu H, Liddington RC (1998). 14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove. J Biol Chem 273, 16305-16310.
Piette AS, Derua R, Waelkens E, Boutry M, Duby G(2011). A phosphorylation in the C-terminal auto-inhibitory domain of the plant plasma membrane H+-ATPase activates the enzyme with no requirement for regulatory 14-3-3 proteins. J Biol Chem 286, 18474-18482.
Pignocchi C, Minns GE, Nesi N, Koumproglou R, Kitsios G, Benning C, Lloyd CW, Doonan JH, Hills MJ (2009). ENDOSPERM DEFECTIVE1 is a novel microtubule-associated protein essential for seed development in Arabidopsis. Plant Cell 21, 90-105.
Pignocchi C, Doonan JH (2011). Interaction of a 14-3-3 protein with the plant microtubule-associated protein EDE1. Ann Bot 107, 1103-1109.
Ryu H, Cho H, Kim K, Hwang I (2010). Phosphorylation dependent nucleocyto-plasmic shuttling of BES1 is a key regulatory event in brassinosteroid signaling. Mol Cells 29, 283–290.
Ryu H, Kim K, Cho H, Park J, Choe S, Hwang I (2007). Nucleocytoplasmic shuttling of BZR1 mediated by phosphorylation is essential in Arabidopsis brassinosteroid signaling. Plant Cell 19, 2749-2762.
Schoonheim PJ, Sinnige MP, Casaretto JA, Veiga H, Bunney TD, Quatrano RS, de Boer AH (2007). 14-3-3 adaptor proteins are intermediates in ABA signal transduction during barley seed germination. Plant J 49, 289-301.
Schultz TF, Medina J, Hill A, Quatrano RS (1998). 14-3-3 proteins are part of an abscisic acid–VIVIPAROUS1 (VP1) response complex in the Em promoter and interact with VP1 and EmBP1. Plant Cell 10, 837–847.
Sehnke PC, Chung HJ, Wu K, Ferl RJ (2001). Regulation of starch accumulation by granule-associated plant 14-3-3 proteins. Proc Nat Acad Sci USA 98, 765-770.
Shi HY, Wang XL, Li DD, Tang WK, Wang H, Xu WL, Li XB (2007). Molecular characterization of cotton 14-3-3L gene preferentially expressed during fiber elongation. J Genet Genomics 34, 151-159.
Shin R, Alvarez S, Burch AY, Jez JM, Schachtman DP (2007). Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes. Proc Natl Acad Sci U S A 104, 6460-6465.
Shin R, Jez JM, Basra A, Zhang B, Schachtman DP (2011). 14-3-3 Proteins fine-tune plant nutrient metabolism. FEBS Lett 585, 143-147.
Solano R, Ecker JR (1998). Ethylene gas: perception, signaling and response. Curr Opin Plant Biol 1, 393–398.
Sullivan S, Thomson CE, Lamont DJ, Jones MA, Christie JM (2008). In vivo phosphorylation site mapping and functional characterization of Arabidopsis phototropin 1. Mol Plant 1, 178-194.
Sullivan S, Thomson CE, Kaiserli E, Christie JM (2009). Interaction specificity of Arabidopsis 14-3-3 proteins with phototropin receptor kinases. FEBS Lett 583, 2187-2193.
van den Wijngaard PW, Sinnige MP, Roobeek I, Reumer A, Schoonheim PJ, Mol JN, Wang M, De Boer AH (2005). Abscisic acid and 14-3-3 proteins control K channel activity in barley embryonic root. Plant J 41, 43–55.
Wei XZ, Zhang ZT, Li Y, Wang XL, Shao SQ, Chen L, Li XB (2009). Expression analysis of two novel cotton 14-3-3 genes in root development and in response to salt stress. Progress in Natural Science 19, 173-178.
Yang X, Lee WH, Sobott F, Papagrigoriou E, Robinson CV, Grossmann JG, Sundstr?m M, Doyle DA, Elkins JM (2006). Structural basis for protein–protein interactions in the 14-3-3 protein family. Proc Natl Acad Sci U S A 103, 17237–17242.
Yao Y, Du Y, Jiang L, Liu JY (2007). Interaction between ACC synthase 1 and 14-3-3 proteins in rice: a new insight. Biochemistry(Mosc) 72, 1003-1007.
Yi H, Galant A, Ravilious GE, Preuss ML, Jez JM (2010). Sensing sulfur conditions: simple to complex protein regulatory mechanisms in plant thiol metabolism. Mol Plant 3, 269–279.
Yin Y, Vafeados D, Tao Y, Yoshida S, Asami T, Chory J (2005). A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell 120, 249–259.
Zhang ZT, Zhou Y, Li Y, Shao SQ, Li BY, Shi HY, Li XB (2010). Interactome analysis of the six cotton 14-3-3s that are preferentially expressed in fibers and involved in cell elongation. J Exp Bot 61, 3331-3344.