于各测定月的小潮日, 使用悬管装置采集气样并结合气相色谱测定, 对闽江河口互花米草(Spartina alterniflora)沼泽湿地互花米草植株的甲烷传输量及其主要释放部位进行了研究, 另又采用静态箱法-气相色谱法测定了互花米草沼泽湿地甲烷的排放通量, 以此分析互花米草植物体甲烷传输对互花米草沼泽湿地甲烷排放通量的贡献率, 最后测定了互花米草植株髓腔内的甲烷浓度。结果表明, 不同生长阶段的互花米草植株甲烷传输量明显不同, 快速生长阶段的互花米草植株甲烷传输量最高; 互花米草植株甲烷传输对互花米草沼泽湿地甲烷排放通量的贡献率介于9%–94%之间; 互花米草植物体传输甲烷的主要释放部位是距地面0–20 cm处, 该部位对植物甲烷传输量的贡献率为50%(平均值); 髓腔内的甲烷浓度远高于大气中的甲烷浓度, 且自下而上呈递减趋势。
We measured methane transport capacity and methane emission from Spartina alterniflora using the “hanging” enclosed static chamber technique and gas chromatography during neap tide from May 2009 to January 2010 in an S. alterniflora marsh in the Min River estuary. The main parts of methane release from S. alterniflora were also determined. Based on the above measurements we analyzed the contribution rate of plant methane transport to methane emission from the S. alterniflora marsh and measured methane concentrations in the medullary cavity of S. alterniflora. The methane transport capacities of S. alterniflora significantly differed during different growth stages, with the highest transport capacity in the fast growth stage. The contribution rates of plant-mediated methane transport to total methane emission from the S. alterniflora marsh ranged from 9% to 94%. Methane transported by S. alterniflora plant was mainly released at plant height 0 to 20 cm above ground, with the average contribution rate of this part to whole plant transport capacity being 50%. The methane concentration in the medullary cavity of S. alterniflora was much higher than that in the atmosphere and decreased from the bottom to the top of S. alterniflora plants.